Magic Ball Game

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 2489    Accepted Submission(s): 759

Problem Description
When the magic ball game turns up, Kimi immediately falls in it. The interesting game is made up of N balls, each with a weight of w[i]. These N balls form a rooted tree, with the 1st ball as the root. Any ball in the game has either 0 or 2 children ball. If
a node has 2 children balls, we may define one as the left child and the other as the right child.

The rules are simple: when Kimi decides to drop a magic ball with a weight of X, the ball goes down through the tree from the root. When the magic ball arrives at a node in the tree, there's a possibility to be catched and stop rolling, or continue to roll
down left or right. The game ends when the ball stops, and the final score of the game depends on the node at which it stops.

After a long-time playing, Kimi now find out the key of the game. When the magic ball arrives at node u weighting w[u], it follows the laws below:

1  If X=w[u] or node u has no children balls, the magic ball stops.

2  If X<w[u], there's a possibility of 1/2 for the magic ball to roll down either left or right.

3  If X>w[u], the magic ball will roll down to its left child in a possibility of 1/8, while the possibility of rolling down right is 7/8.

In order to choose the right magic ball and achieve the goal, Kimi wonders what's the possibility for a magic ball with a weight of X to go past node v. No matter how the magic ball rolls down, it counts if node v exists on the path that the magic ball goes
along.

Manual calculating is fun, but programmers have their ways to reach the answer. Now given the tree in the game and all Kimi's queries, you're required to answer the possibility he wonders.
 
Input
The input contains several test cases. An integer T(T≤15) will exist in the first line of input, indicating the number of test cases.

Each test case begins with an integer N(1≤N≤105), indicating the number of nodes in the tree. The following line contains N integers w[i], indicating the weight of each node in the tree. (1 ≤ i ≤ N, 1 ≤ w[i] ≤ 109, N is odd)

The following line contains the number of relationships M. The next M lines, each with three integers u,a and b(1≤u,a,b≤N), denotes that node a and b are respectively the left child and right child of node u. You may assume the tree contains exactly N nodes
and (N-1) edges.

The next line gives the number of queries Q(1≤Q≤105). The following Q lines, each with two integers v and X(1≤v≤N,1≤X≤109), describe all the queries.
 
Output
If the magic ball is impossible to arrive at node v, output a single 0. Otherwise, you may easily find that the answer will be in the format of 7x/2y . You're only required to output the x and y for each query, separated by a blank. Each
answer should be put down in one line.
 
Sample Input
1
3
2 3 1
1
1 2 3
3
3 2
1 1
3 4
 
Sample Output
0
0 0
1 3
这道题目和HDU 5877 差不多。
两道题目都是在一棵树上进行操作,从树的根节点到某个节点的路径是唯一的,这个路径的所有节点形成的序列。
如果要在这个序列里进行各种操作,那么就要用树状数组或者线段树来解决。用树状数组要注意,在dfs回朔的时候
要删除点。如果用线段树来解决,那么可以有两种方式,一个是把线段树当做树状数组来用,毕竟树状数组能实现的东西
线段树都能实现。另外一种方式可以用可持续化线段树,就是在树的每一个点上面建立一个线段树,那么每个点上的线段树
就表示从根节点到这个节点的路径上所有点插到线段树里。
可持续化线段树:
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <map>
#include <vector> using namespace std;
typedef long long int LL;
const int maxn=1e5;
vector<int> e[maxn+5];
map<LL,int> mm;
LL rt[maxn+5];
LL ls[maxn*20+5];
LL rs[maxn*20+5];;
LL p2;
LL p;
int n,m,q;
LL num[maxn*20+5][2];
LL a[maxn+5];
LL w[maxn+5];
int Hash(LL x)
{
return upper_bound(a+1,a+n+1,x)-a-1;
}
int newnode()
{
ls[p]=rs[p]=num[p][0]=num[p][1]=0;
return p++;
}
void update(LL &node,int l,int r,LL tag,int flag)
{ if(node==0)
node=newnode();
else
{
ls[p]=ls[node];
rs[p]=rs[node];
num[p][0]=num[node][0];
num[p][1]=num[node][1];
node=p++;
}
if(l==r)
{
num[node][flag]++;
return;
}
num[node][flag]++;
int mid=(l+r)>>1;
if(tag<=mid) update(ls[node],l,mid,tag,flag);
else update(rs[node],mid+1,r,tag,flag); }
LL query(LL node,int l,int r,LL L,LL R,int flag)
{
if(L>R) return 0;
if(!node) return 0;
if(L<=l&&r<=R)
return num[node][flag];
int mid=(l+r)>>1;
LL ret=0;
if(L<=mid) ret+=query(ls[node],l,mid,L,R,flag);
if(R>mid) ret+=query(rs[node],mid+1,r,L,R,flag);
return ret;
}
void dfs(int root)
{
int len=e[root].size();
for(int i=0;i<len;i++)
{
int v=e[root][i];
update(rt[v]=rt[root],1,n,Hash(w[root]),i);
dfs(v);
}
}
int main()
{
int t;
scanf("%d",&t);
LL x,y,z;
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
e[i].clear();
scanf("%lld",&w[i]);
a[i]=w[i];
}
sort(a+1,a+n+1);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%lld%lld%lld",&x,&y,&z);
e[x].push_back(y);
e[x].push_back(z); }
memset(rt,0,sizeof(rt));
memset(num,0,sizeof(num));
p=1;
dfs(1);
scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%lld%lld",&x,&y);
if(x==1) {printf("0 0\n");continue;} int xx=Hash(y);
if(a[xx]==y)
{
int num2=query(rt[x],1,n,xx,xx,0);
int num5=query(rt[x],1,n,xx,xx,1); if(num2||num5)
{
printf("0\n");
continue;
} } LL num1=query(rt[x],1,n,1,xx,0); LL num3=query(rt[x],1,n,xx+1,n,0); LL num4=query(rt[x],1,n,1,xx,1); LL num6=query(rt[x],1,n,xx+1,n,1); LL ans1=3*(num1+num4)+num3+num6;
LL ans2=num4; printf("%lld %lld\n",ans2,ans1); }
}
return 0;
}

树状数组:

#include <iostream>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <vector> using namespace std;
const int maxn=1e5;
typedef long long int LL;
int e[maxn+5][2];
int c0[maxn+5];
int c1[maxn+5];
int n,m,q;
int lowbit(int x) {return x&(-x);}
int w[maxn+5];
int vis[maxn+5];
int a[maxn+5];
vector<pair<int,int> > b[maxn+5];
int ans1[maxn+5];
int ans2[maxn+5];
int Hash(int x)
{
return upper_bound(a+1,a+n+1,x)-a-1;
}
void update0(int x,int tag)
{
while(x<=n)
{
c0[x]+=tag;
x+=lowbit(x);
}
}
int sum0(int x)
{
int num=0;
for(int i=x;i>=1;i-=lowbit(i))
{
num+=c0[i];
}
return num;
}
void update1(int x,int tag)
{
while(x<=n)
{
c1[x]+=tag;
x+=lowbit(x);
}
}
int sum1(int x)
{
int num=0;
for(int i=x;i>=1;i-=lowbit(i))
{
num+=c1[i];
}
return num;
}
void init()
{
memset(c0,0,sizeof(c0));
memset(c1,0,sizeof(c1));
memset(vis,0,sizeof(vis));
memset(e,-1,sizeof(e));
memset(ans1,0,sizeof(ans1));
memset(ans2,0,sizeof(ans2));
for(int i=1;i<=n;i++)
{
b[i].clear();
}
}
void dfs(int root)
{
for(int i=0;i<=1;i++)
{
if(e[root][i]==-1) continue;
int v=e[root][i];
if(!i) update0(Hash(w[root]),1);
else update1(Hash(w[root]),1);
if(vis[v])
{
int len=b[v].size();
for(int j=0;j<len;j++)
{
int y=b[v][j].first;
int x=b[v][j].second;
int xx=Hash(y);
if(a[xx]==y)
{
if((sum0(xx)-sum0(xx-1))!=0||(sum1(xx)-sum1(xx-1))!=0)
{
ans1[x]=-1;
continue;
}
}
int left_low=sum0(xx);
int left_up=sum0(n)-sum0(xx);
int right_low=sum1(xx);
int right_up=sum1(n)-sum1(xx);
ans1[x]=right_low;
ans2[x]=3*(left_low+right_low)+left_up+right_up; }
}
dfs(v);
if(!i) update0(Hash(w[root]),-1);
else update1(Hash(w[root]),-1);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int x,y,z;
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
{
scanf("%d",&w[i]);
a[i]=w[i];
}
sort(a+1,a+n+1);
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
e[x][0]=y;
e[x][1]=z;
}
scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%d%d",&x,&y);
vis[x]=1;
b[x].push_back(make_pair(y,i));
}
dfs(1);
for(int i=1;i<=q;i++)
{
if(ans1[i]==-1) {printf("0\n");continue;}
else
{
printf("%d %d\n",ans1[i],ans2[i]);
}
} }
return 0;
}


HDU 4605 Magic Ball Game(可持续化线段树,树状数组,离散化)的更多相关文章

  1. HDU 4605 Magic Ball Game (dfs+离线树状数组)

    题意:给你一颗有根树,它的孩子要么只有两个,要么没有,且每个点都有一个权值w. 接着给你一个权值为x的球,它从更节点开始向下掉,有三种情况 x=w[now]:停在此点 x<w[now]:当有孩子 ...

  2. hdu 4605 Magic Ball Game (在线主席树/离线树状数组)

    版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4605 题意: 有一颗树,根节点为1,每一个节点要么有两个子节点,要么没有,每个节点都有一个权值wi .然后,有一个球,附带值x . 球 ...

  3. HDU 4605 Magic Ball Game 树状数组

    题目大意很简单. 有一颗树(10^5结点),所有结点要么没有子结点,要么有两个子结点.然后每个结点都有一个重量值,根结点是1 然后有一个球,从结点1开始往子孙结点走. 每碰到一个结点,有三种情况 如果 ...

  4. hdu 4605 Magic Ball Game

    http://acm.hdu.edu.cn/showproblem.php?pid=4605 可以离线求解 把所以可能出现的 magic ball  放在一个数组里(去重),从小到大排列 先不考虑特殊 ...

  5. HDU 4605 Magic Ball Game (在线主席树|| 离线 线段树)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出一棵二叉树,每个结点孩子数目为0或者2. ...

  6. HDU 4605 Magic Ball Game 主席树

    题意: 给一棵\(n(1 \leq n \leq 10^5)\)个节点的二叉树,除叶子节点外,每个点都有左儿子和右儿子. 每个点上都有一个权值. 游戏规则是这样的:在根节点放一个权值为\(X\)的小球 ...

  7. HDU 4605 Magic Ball Game(离线算法)

    题目链接 思路就很难想+代码实现也很麻烦,知道算法后,已经写的很繁琐而且花了很长时间,200+,好久没写过这么长的代码了. #pragma comment(linker, "/STACK:1 ...

  8. hdu4605 树状数组+离散化+dfs

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. POJ 2299 【树状数组 离散化】

    题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...

随机推荐

  1. 【Android】13.1 用Android自带的API访问SQLite数据库

    分类:C#.Android.VS2015: 创建日期:2016-02-26 一.简介 这一节我们先来看看如何直接用Android自带的API创建和访问SQLite数据库. 1.创建SQLite数据库 ...

  2. C/C++:C++伪函数

    C++伪函数: 所谓的伪函数.就是说它不是一个真正的函数,而是一个类或者说是一个结构体. <span style="font-size:18px;"> #include ...

  3. nginx rewrite目录对换

    /123/xxx----->xxx?id=123 [root@web01 default]# pwd /app/www/default [root@web01 └── sss └── index ...

  4. Android 开发之Android 应用程序如何调用支付宝接口

    1.到支付宝官网,下载支付宝集成开发包 由于android设备一般用的都是无线支付,所以我们申请的就是支付宝无线快捷支付接口.下面是申请的地址以及下载接口开发包的网址:https://b.alipay ...

  5. oracle中floor函数和to_number函数区别

     oracle中floor函数没有值默认是0,number函数没有值默认是空 

  6. Excel TargetRange.Validation为空的

    做Excel的时候遇到过TargetRange.Validation为空,赋值类似空指针一样的情况. 这样的情况,不懂Excel调试了好久,最后还知道,这个对象需要自己去定义才能够进行赋值, 这样定义 ...

  7. osgi实战学习之路:6. Service-1

    什么是Service? 它是注冊到osgi的一个java对象 Service注冊: 通过BundleContext::registerService(java.lang.String[] clazze ...

  8. C++中数字和字符串的转换

    1.字符串数字之间的转换 (1)string --> char *   string str("OK");   char * p = str.c_str(); (2)char ...

  9. ssh2——Interceptor拦截器

    尽管没学过struts1吧.可是了解到struts1中并没有拦截器,  到Struts2才有.它是基于WebWork发展起来的, 顾名思义,说到拦截器大家首先肯定会想到它是拦截东西的,起到一个限制的作 ...

  10. springMVC介绍

    http://www.iteye.com/blogs/subjects/springMVC —————————————————————————————————————————————————————— ...