Efficient data transfer through zero copy
Efficient data transfer through zero copy https://www.ibm.com/developerworks/library/j-zerocopy/
Efficient data transfer through zero copy
Zero copy, zero overhead
Published on September 02, 2008
Many Web applications serve a significant amount of static content, which amounts to reading data off of a disk and writing the exact same data back to the response socket. This activity might appear to require relatively little CPU activity, but it's somewhat inefficient: the kernel reads the data off of disk and pushes it across the kernel-user boundary to the application, and then the application pushes it back across the kernel-user boundary to be written out to the socket. In effect, the application serves as an inefficient intermediary that gets the data from the disk file to the socket.
Each time data traverses the user-kernel boundary, it must be copied, which consumes CPU cycles and memory bandwidth. Fortunately, you can eliminate these copies through a technique called — appropriately enough — zero copy. Applications that use zero copy request that the kernel copy the data directly from the disk file to the socket, without going through the application. Zero copy greatly improves application performance and reduces the number of context switches between kernel and user mode.
The Java class libraries support zero copy on Linux and UNIX systems through the transferTo()
method injava.nio.channels.FileChannel
. You can use the transferTo()
method to transfer bytes directly from the channel on which it is invoked to another writable byte channel, without requiring data to flow through the application. This article first demonstrates the overhead incurred by simple file transfer done through traditional copy semantics, then shows how the zero-copy technique using transferTo()
achieves better performance.
Date transfer: The traditional approach
Consider the scenario of reading from a file and transferring the data to another program over the network. (This scenario describes the behavior of many server applications, including Web applications serving static content, FTP servers, mail servers, and so on.) The core of the operation is in the two calls in Listing 1 (see Download for a link to the complete sample code):
Listing 1. Copying bytes from a file to a socket
1
2
|
File.read(fileDesc, buf, len); Socket.send(socket, buf, len); |
Although Listing 1 is conceptually simple, internally, the copy operation requires four context switches between user mode and kernel mode, and the data is copied four times before the operation is complete. Figure 1 shows how data is moved internally from the file to the socket:
Figure 1. Traditional data copying approach
Figure 2 shows the context switching:
Figure 2. Traditional context switches
The steps involved are:
- The
read()
call causes a context switch (see Figure 2) from user mode to kernel mode. Internally asys_read()
(or equivalent) is issued to read the data from the file. The first copy (see Figure 1) is performed by the direct memory access (DMA) engine, which reads file contents from the disk and stores them into a kernel address space buffer. - The requested amount of data is copied from the read buffer into the user buffer, and the
read()
call returns. The return from the call causes another context switch from kernel back to user mode. Now the data is stored in the user address space buffer. - The
send()
socket call causes a context switch from user mode to kernel mode. A third copy is performed to put the data into a kernel address space buffer again. This time, though, the data is put into a different buffer, one that is associated with the destination socket. - The
send()
system call returns, creating the fourth context switch. Independently and asynchronously, a fourth copy happens as the DMA engine passes the data from the kernel buffer to the protocol engine.
Use of the intermediate kernel buffer (rather than a direct transfer of the data into the user buffer) might seem inefficient. But intermediate kernel buffers were introduced into the process to improve performance. Using the intermediate buffer on the read side allows the kernel buffer to act as a "readahead cache" when the application hasn't asked for as much data as the kernel buffer holds. This significantly improves performance when the requested data amount is less than the kernel buffer size. The intermediate buffer on the write side allows the write to complete asynchronously.
Unfortunately, this approach itself can become a performance bottleneck if the size of the data requested is considerably larger than the kernel buffer size. The data gets copied multiple times among the disk, kernel buffer, and user buffer before it is finally delivered to the application.
Zero copy improves performance by eliminating these redundant data copies.
Data transfer: The zero-copy approach
If you re-examine the traditional scenario, you'll notice that the second and third data copies are not actually required. The application does nothing other than cache the data and transfer it back to the socket buffer. Instead, the data could be transferred directly from the read buffer to the socket buffer. The transferTo()
method lets you do exactly this. Listing 2 shows the method signature of transferTo()
:
Listing 2. The transferTo()
method
1
|
public void transferTo(long position, long count, WritableByteChannel target); |
The transferTo()
method transfers data from the file channel to the given writable byte channel. Internally, it depends on the underlying operating system's support for zero copy; in UNIX and various flavors of Linux, this call is routed to the sendfile()
system call, shown in Listing 3, which transfers data from one file descriptor to another:
Listing 3. The sendfile()
system call
1
2
|
#include < sys /socket.h> ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count); |
The action of the file.read()
and socket.send()
calls in Listing 1 can be replaced by a single transferTo()
call, as shown in Listing 4:
Listing 4. Using transferTo()
to copy data from a disk file to a socket
1
|
transferTo(position, count, writableChannel); |
Figure 3 shows the data path when the transferTo()
method is used:
Figure 3. Data copy with transferTo()
Figure 4 shows the context switches when the transferTo()
method is used:
Figure 4. Context switching with transferTo()
The steps taken when you use transferTo()
as in Listing 4 are:
- The
transferTo()
method causes the file contents to be copied into a read buffer by the DMA engine. Then the data is copied by the kernel into the kernel buffer associated with the output socket. - The third copy happens as the DMA engine passes the data from the kernel socket buffers to the protocol engine.
This is an improvement: we've reduced the number of context switches from four to two and reduced the number of data copies from four to three (only one of which involves the CPU). But this does not yet get us to our goal of zero copy. We can further reduce the data duplication done by the kernel if the underlying network interface card supports gather operations. In Linux kernels 2.4 and later, the socket buffer descriptor was modified to accommodate this requirement. This approach not only reduces multiple context switches but also eliminates the duplicated data copies that require CPU involvement. The user-side usage still remains the same, but the intrinsics have changed:
- The
transferTo()
method causes the file contents to be copied into a kernel buffer by the DMA engine. - No data is copied into the socket buffer. Instead, only descriptors with information about the location and length of the data are appended to the socket buffer. The DMA engine passes data directly from the kernel buffer to the protocol engine, thus eliminating the remaining final CPU copy.
Figure 5 shows the data copies using transferTo()
with the gather operation:
Figure 5. Data copies when transferTo()
and gather operations are used
Building a file server
Now let's put zero copy into practice, using the same example of transferring a file between a client and a server (see Download for the sample code). TraditionalClient.java
and TraditionalServer.java
are based on the traditional copy semantics, using File.read()
and Socket.send()
. TraditionalServer.java
is a server program that listens on a particular port for the client to connect, and then reads 4K bytes of data at a time from the socket. TraditionalClient.java
connects to the server, reads (using File.read()
) 4K bytes of data from a file, and sends (using socket.send()
) the contents to the server via the socket.
Similarly, TransferToServer.java
and TransferToClient.java
perform the same function, but instead use the transferTo()
method (and in turn the sendfile()
system call) to transfer the file from server to client.
Performance comparison
We executed the sample programs on a Linux system running the 2.6 kernel and measured the run time in milliseconds for both the traditional approach and the transferTo()
approach for various sizes. Table 1 shows the results:
Table 1. Performance comparison: Traditional approach vs. zero copy
File size | Normal file transfer (ms) | transferTo (ms) |
---|---|---|
7MB | 156 | 45 |
21MB | 337 | 128 |
63MB | 843 | 387 |
98MB | 1320 | 617 |
200MB | 2124 | 1150 |
350MB | 3631 | 1762 |
700MB | 13498 | 4422 |
1GB | 18399 | 8537 |
As you can see, the transferTo()
API brings down the time approximately 65 percent compared to the traditional approach. This has the potential to increase performance significantly for applications that do a great deal of copying of data from one I/O channel to another, such as Web servers.
Summary
We have demonstrated the performance advantages of using transferTo()
compared to reading from one channel and writing the same data to another. Intermediate buffer copies — even those hidden in the kernel — can have a measurable cost. In applications that do a great deal of copying of data between channels, the zero-copy technique can offer a significant performance improvement.
Downloadable resources
- PDF of this content
- Sample programs for this article (j-zerocopy.zip | 3KB)
Related topic
Efficient data transfer through zero copy
Zero copy, zero overhead
Published on September 02, 2008
Many Web applications serve a significant amount of static content, which amounts to reading data off of a disk and writing the exact same data back to the response socket. This activity might appear to require relatively little CPU activity, but it's somewhat inefficient: the kernel reads the data off of disk and pushes it across the kernel-user boundary to the application, and then the application pushes it back across the kernel-user boundary to be written out to the socket. In effect, the application serves as an inefficient intermediary that gets the data from the disk file to the socket.
Each time data traverses the user-kernel boundary, it must be copied, which consumes CPU cycles and memory bandwidth. Fortunately, you can eliminate these copies through a technique called — appropriately enough — zero copy. Applications that use zero copy request that the kernel copy the data directly from the disk file to the socket, without going through the application. Zero copy greatly improves application performance and reduces the number of context switches between kernel and user mode.
The Java class libraries support zero copy on Linux and UNIX systems through the transferTo()
method injava.nio.channels.FileChannel
. You can use the transferTo()
method to transfer bytes directly from the channel on which it is invoked to another writable byte channel, without requiring data to flow through the application. This article first demonstrates the overhead incurred by simple file transfer done through traditional copy semantics, then shows how the zero-copy technique using transferTo()
achieves better performance.
Date transfer: The traditional approach
Consider the scenario of reading from a file and transferring the data to another program over the network. (This scenario describes the behavior of many server applications, including Web applications serving static content, FTP servers, mail servers, and so on.) The core of the operation is in the two calls in Listing 1 (see Download for a link to the complete sample code):
Listing 1. Copying bytes from a file to a socket
1
2
|
File.read(fileDesc, buf, len); Socket.send(socket, buf, len); |
Although Listing 1 is conceptually simple, internally, the copy operation requires four context switches between user mode and kernel mode, and the data is copied four times before the operation is complete. Figure 1 shows how data is moved internally from the file to the socket:
Figure 1. Traditional data copying approach
Figure 2 shows the context switching:
Figure 2. Traditional context switches
The steps involved are:
- The
read()
call causes a context switch (see Figure 2) from user mode to kernel mode. Internally asys_read()
(or equivalent) is issued to read the data from the file. The first copy (see Figure 1) is performed by the direct memory access (DMA) engine, which reads file contents from the disk and stores them into a kernel address space buffer. - The requested amount of data is copied from the read buffer into the user buffer, and the
read()
call returns. The return from the call causes another context switch from kernel back to user mode. Now the data is stored in the user address space buffer. - The
send()
socket call causes a context switch from user mode to kernel mode. A third copy is performed to put the data into a kernel address space buffer again. This time, though, the data is put into a different buffer, one that is associated with the destination socket. - The
send()
system call returns, creating the fourth context switch. Independently and asynchronously, a fourth copy happens as the DMA engine passes the data from the kernel buffer to the protocol engine.
Use of the intermediate kernel buffer (rather than a direct transfer of the data into the user buffer) might seem inefficient. But intermediate kernel buffers were introduced into the process to improve performance. Using the intermediate buffer on the read side allows the kernel buffer to act as a "readahead cache" when the application hasn't asked for as much data as the kernel buffer holds. This significantly improves performance when the requested data amount is less than the kernel buffer size. The intermediate buffer on the write side allows the write to complete asynchronously.
Unfortunately, this approach itself can become a performance bottleneck if the size of the data requested is considerably larger than the kernel buffer size. The data gets copied multiple times among the disk, kernel buffer, and user buffer before it is finally delivered to the application.
Zero copy improves performance by eliminating these redundant data copies.
Data transfer: The zero-copy approach
If you re-examine the traditional scenario, you'll notice that the second and third data copies are not actually required. The application does nothing other than cache the data and transfer it back to the socket buffer. Instead, the data could be transferred directly from the read buffer to the socket buffer. The transferTo()
method lets you do exactly this. Listing 2 shows the method signature of transferTo()
:
Listing 2. The transferTo()
method
1
|
public void transferTo(long position, long count, WritableByteChannel target); |
The transferTo()
method transfers data from the file channel to the given writable byte channel. Internally, it depends on the underlying operating system's support for zero copy; in UNIX and various flavors of Linux, this call is routed to the sendfile()
system call, shown in Listing 3, which transfers data from one file descriptor to another:
Listing 3. The sendfile()
system call
1
2
|
#include < sys /socket.h> ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count); |
The action of the file.read()
and socket.send()
calls in Listing 1 can be replaced by a single transferTo()
call, as shown in Listing 4:
Listing 4. Using transferTo()
to copy data from a disk file to a socket
1
|
transferTo(position, count, writableChannel); |
Figure 3 shows the data path when the transferTo()
method is used:
Figure 3. Data copy with transferTo()
Figure 4 shows the context switches when the transferTo()
method is used:
Figure 4. Context switching with transferTo()
The steps taken when you use transferTo()
as in Listing 4 are:
- The
transferTo()
method causes the file contents to be copied into a read buffer by the DMA engine. Then the data is copied by the kernel into the kernel buffer associated with the output socket. - The third copy happens as the DMA engine passes the data from the kernel socket buffers to the protocol engine.
This is an improvement: we've reduced the number of context switches from four to two and reduced the number of data copies from four to three (only one of which involves the CPU). But this does not yet get us to our goal of zero copy. We can further reduce the data duplication done by the kernel if the underlying network interface card supports gather operations. In Linux kernels 2.4 and later, the socket buffer descriptor was modified to accommodate this requirement. This approach not only reduces multiple context switches but also eliminates the duplicated data copies that require CPU involvement. The user-side usage still remains the same, but the intrinsics have changed:
- The
transferTo()
method causes the file contents to be copied into a kernel buffer by the DMA engine. - No data is copied into the socket buffer. Instead, only descriptors with information about the location and length of the data are appended to the socket buffer. The DMA engine passes data directly from the kernel buffer to the protocol engine, thus eliminating the remaining final CPU copy.
Figure 5 shows the data copies using transferTo()
with the gather operation:
Figure 5. Data copies when transferTo()
and gather operations are used
Building a file server
Now let's put zero copy into practice, using the same example of transferring a file between a client and a server (see Download for the sample code). TraditionalClient.java
and TraditionalServer.java
are based on the traditional copy semantics, using File.read()
and Socket.send()
. TraditionalServer.java
is a server program that listens on a particular port for the client to connect, and then reads 4K bytes of data at a time from the socket. TraditionalClient.java
connects to the server, reads (using File.read()
) 4K bytes of data from a file, and sends (using socket.send()
) the contents to the server via the socket.
Similarly, TransferToServer.java
and TransferToClient.java
perform the same function, but instead use the transferTo()
method (and in turn the sendfile()
system call) to transfer the file from server to client.
Performance comparison
We executed the sample programs on a Linux system running the 2.6 kernel and measured the run time in milliseconds for both the traditional approach and the transferTo()
approach for various sizes. Table 1 shows the results:
Table 1. Performance comparison: Traditional approach vs. zero copy
File size | Normal file transfer (ms) | transferTo (ms) |
---|---|---|
7MB | 156 | 45 |
21MB | 337 | 128 |
63MB | 843 | 387 |
98MB | 1320 | 617 |
200MB | 2124 | 1150 |
350MB | 3631 | 1762 |
700MB | 13498 | 4422 |
1GB | 18399 | 8537 |
As you can see, the transferTo()
API brings down the time approximately 65 percent compared to the traditional approach. This has the potential to increase performance significantly for applications that do a great deal of copying of data from one I/O channel to another, such as Web servers.
Summary
We have demonstrated the performance advantages of using transferTo()
compared to reading from one channel and writing the same data to another. Intermediate buffer copies — even those hidden in the kernel — can have a measurable cost. In applications that do a great deal of copying of data between channels, the zero-copy technique can offer a significant performance improvement.
Downloadable resources
- PDF of this content
- Sample programs for this article (j-zerocopy.zip | 3KB)
Related topic
Zero Copy I: User-Mode Perspective | Linux Journal https://www.linuxjournal.com/article/6345
Zero Copy I: User-Mode Perspective
By now almost everyone has heard of so-called zero-copy functionality under Linux, but I often run into people who don't have a full understanding of the subject. Because of this, I decided to write a few articles that dig into the matter a bit deeper, in the hope of unraveling this useful feature. In this article, we take a look at zero copy from a user-mode application point of view, so gory kernel-level details are omitted intentionally.
To better understand the solution to a problem, we first need to understand the problem itself. Let's look at what is involved in the simple procedure of a network server dæmon serving data stored in a file to a client over the network. Here's some sample code:
read(file, tmp_buf, len);
write(socket, tmp_buf, len);
Looks simple enough; you would think there is not much overhead with only those two system calls. In reality, this couldn't be further from the truth. Behind those two calls, the data has been copied at least four times, and almost as many user/kernel context switches have been performed. (Actually this process is much more complicated, but I wanted to keep it simple). To get a better idea of the process involved, take a look at Figure 1. The top side shows context switches, and the bottom side shows copy operations.
Figure 1. Copying in Two Sample System Calls
Step one: the read system call causes a context switch from user mode to kernel mode. The first copy is performed by the DMA engine, which reads file contents from the disk and stores them into a kernel address space buffer.
Step two: data is copied from the kernel buffer into the user buffer, and the read system call returns. The return from the call caused a context switch from kernel back to user mode. Now the data is stored in the user address space buffer, and it can begin its way down again.
Step three: the write system call causes a context switch from user mode to kernel mode. A third copy is performed to put the data into a kernel address space buffer again. This time, though, the data is put into a different buffer, a buffer that is associated with sockets specifically.
Step four: the write system call returns, creating our fourth context switch. Independently and asynchronously, a fourth copy happens as the DMA engine passes the data from the kernel buffer to the protocol engine. You are probably asking yourself, “What do you mean independently and asynchronously? Wasn't the data transmitted before the call returned?” Call return, in fact, doesn't guarantee transmission; it doesn't even guarantee the start of the transmission. It simply means the Ethernet driver had free descriptors in its queue and has accepted our data for transmission. There could be numerous packets queued before ours. Unless the driver/hardware implements priority rings or queues, data is transmitted on a first-in-first-out basis. (The forked DMA copy in Figure 1 illustrates the fact that the last copy can be delayed).
As you can see, a lot of data duplication is not really necessary to hold things up. Some of the duplication could be eliminated to decrease overhead and increase performance. As a driver developer, I work with hardware that has some pretty advanced features. Some hardware can bypass the main memory altogether and transmit data directly to another device. This feature eliminates a copy in the system memory and is a nice thing to have, but not all hardware supports it. There is also the issue of the data from the disk having to be repackaged for the network, which introduces some complications. To eliminate overhead, we could start by eliminating some of the copying between the kernel and user buffers.
One way to eliminate a copy is to skip calling read and instead call mmap. For example:
tmp_buf = mmap(file, len);
write(socket, tmp_buf, len);
To get a better idea of the process involved, take a look at Figure 2. Context switches remain the same.
Figure 2. Calling mmap
Step one: the mmap system call causes the file contents to be copied into a kernel buffer by the DMA engine. The buffer is shared then with the user process, without any copy being performed between the kernel and user memory spaces.
Step two: the write system call causes the kernel to copy the data from the original kernel buffers into the kernel buffers associated with sockets.
Step three: the third copy happens as the DMA engine passes the data from the kernel socket buffers to the protocol engine.
By using mmap instead of read, we've cut in half the amount of data the kernel has to copy. This yields reasonably good results when a lot of data is being transmitted. However, this improvement doesn't come without a price; there are hidden pitfalls when using the mmap+write method. You will fall into one of them when you memory map a file and then call write while another process truncates the same file. Your write system call will be interrupted by the bus error signal SIGBUS, because you performed a bad memory access. The default behavior for that signal is to kill the process and dump core—not the most desirable operation for a network server. There are two ways to get around this problem.
The first way is to install a signal handler for the SIGBUS signal, and then simply call return in the handler. By doing this the write system call returns with the number of bytes it wrote before it got interrupted and the errno set to success. Let me point out that this would be a bad solution, one that treats the symptoms and not the cause of the problem. Because SIGBUS signals that something has gone seriously wrong with the process, I would discourage using this as a solution.
The second solution involves file leasing (which is called “opportunistic locking” in Microsoft Windows) from the kernel. This is the correct way to fix this problem. By using leasing on the file descriptor, you take a lease with the kernel on a particular file. You then can request a read/write lease from the kernel. When another process tries to truncate the file you are transmitting, the kernel sends you a real-time signal, the RT_SIGNAL_LEASE signal. It tells you the kernel is breaking your write or read lease on that file. Your write call is interrupted before your program accesses an invalid address and gets killed by the SIGBUS signal. The return value of the write call is the number of bytes written before the interruption, and the errno will be set to success. Here is some sample code that shows how to get a lease from the kernel:
if(fcntl(fd, F_SETSIG, RT_SIGNAL_LEASE) == -1) {
perror("kernel lease set signal");
return -1;
}
/* l_type can be F_RDLCK F_WRLCK */
if(fcntl(fd, F_SETLEASE, l_type)){
perror("kernel lease set type");
return -1;
}
You should get your lease before mmaping the file, and break your lease after you are done. This is achieved by calling fcntl F_SETLEASE with the lease type of F_UNLCK.
In kernel version 2.1, the sendfile system call was introduced to simplify the transmission of data over the network and between two local files. Introduction of sendfile not only reduces data copying, it also reduces context switches. Use it like this:
sendfile(socket, file, len);
To get a better idea of the process involved, take a look at Figure 3.
Figure 3. Replacing Read and Write with Sendfile
Step one: the sendfile system call causes the file contents to be copied into a kernel buffer by the DMA engine. Then the data is copied by the kernel into the kernel buffer associated with sockets.
Step two: the third copy happens as the DMA engine passes the data from the kernel socket buffers to the protocol engine.
You are probably wondering what happens if another process truncates the file we are transmitting with the sendfile system call. If we don't register any signal handlers, the sendfile call simply returns with the number of bytes it transferred before it got interrupted, and the errno will be set to success.
If we get a lease from the kernel on the file before we call sendfile, however, the behavior and the return status are exactly the same. We also get the RT_SIGNAL_LEASE signal before the sendfile call returns.
So far, we have been able to avoid having the kernel make several copies, but we are still left with one copy. Can that be avoided too? Absolutely, with a little help from the hardware. To eliminate all the data duplication done by the kernel, we need a network interface that supports gather operations. This simply means that data awaiting transmission doesn't need to be in consecutive memory; it can be scattered through various memory locations. In kernel version 2.4, the socket buffer descriptor was modified to accommodate those requirements—what is known as zero copy under Linux. This approach not only reduces multiple context switches, it also eliminates data duplication done by the processor. For user-level applications nothing has changed, so the code still looks like this:
sendfile(socket, file, len);
To get a better idea of the process involved, take a look at Figure 4.
Figure 4. Hardware that supports gather can assemble data from multiple memory locations, eliminating another copy.
Step one: the sendfile system call causes the file contents to be copied into a kernel buffer by the DMA engine.
Step two: no data is copied into the socket buffer. Instead, only descriptors with information about the whereabouts and length of the data are appended to the socket buffer. The DMA engine passes data directly from the kernel buffer to the protocol engine, thus eliminating the remaining final copy.
Because data still is actually copied from the disk to the memory and from the memory to the wire, some might argue this is not a true zero copy. This is zero copy from the operating system standpoint, though, because the data is not duplicated between kernel buffers. When using zero copy, other performance benefits can be had besides copy avoidance, such as fewer context switches, less CPU data cache pollution and no CPU checksum calculations.
Now that we know what zero copy is, let's put theory into practice and write some code. You can download the full source code from www.xalien.org/articles/source/sfl-src.tgz. To unpack the source code, type tar -zxvf sfl-src.tgz at the prompt. To compile the code and create the random data file data.bin, run make.
Looking at the code starting with header files:
/* sfl.c sendfile example program
Dragan Stancevic <
header name function / variable
-------------------------------------------------*/
#include <stdio.h> /* printf, perror */
#include <fcntl.h> /* open */
#include <unistd.h> /* close */
#include <errno.h> /* errno */
#include <string.h> /* memset */
#include <sys/socket.h> /* socket */
#include <netinet/in.h> /* sockaddr_in */
#include <sys/sendfile.h> /* sendfile */
#include <arpa/inet.h> /* inet_addr */
#define BUFF_SIZE (10*1024) /* size of the tmp
buffer */
Besides the regular <sys/socket.h> and <netinet/in.h> required for basic socket operation, we need a prototype definition of the sendfile system call. This can be found in the <sys/sendfile.h> server flag:
/* are we sending or receiving */
if(argv[1][0] == 's') is_server++;
/* open descriptors */
sd = socket(PF_INET, SOCK_STREAM, 0);
if(is_server) fd = open("data.bin", O_RDONLY);
The same program can act as either a server/sender or a client/receiver. We have to check one of the command-prompt parameters, and then set the flag is_server to run in sender mode. We also open a stream socket of the INET protocol family. As part of running in server mode we need some type of data to transmit to a client, so we open our data file. We are using the system call sendfile to transmit data, so we don't have to read the actual contents of the file and store it in our program memory buffer. Here's the server address:
/* clear the memory */
memset(&sa, 0, sizeof(struct sockaddr_in));
/* initialize structure */
sa.sin_family = PF_INET;
sa.sin_port = htons(1033);
sa.sin_addr.s_addr = inet_addr(argv[2]);
We clear the server address structure and assign the protocol family, port and IP address of the server. The address of the server is passed as a command-line parameter. The port number is hard coded to unassigned port 1033. This port number was chosen because it is above the port range requiring root access to the system.
Here is the server execution branch:
if(is_server){
int client; /* new client socket */
printf("Server binding to [%s]\n", argv[2]);
if(bind(sd, (struct sockaddr *)&sa,
sizeof(sa)) < 0){
perror("bind");
exit(errno);
}
As a server, we need to assign an address to our socket descriptor. This is achieved by the system call bind, which assigns the socket descriptor (sd) a server address (sa):
if(listen(sd,1) < 0){
perror("listen");
exit(errno);
}
Because we are using a stream socket, we have to advertise our willingness to accept incoming connections and set the connection queue size. I've set the backlog queue to 1, but it is common to set the backlog a bit higher for established connections waiting to be accepted. In older versions of the kernel, the backlog queue was used to prevent syn flood attacks. Because the system call listen changed to set parameters for only established connections, the backlog queue feature has been deprecated for this call. The kernel parameter tcp_max_syn_backlog has taken over the role of protecting the system from syn flood attacks:
if((client = accept(sd, NULL, NULL)) < 0){
perror("accept");
exit(errno);
}
The system call accept creates a new connected socket from the first connection request on the pending connections queue. The return value from the call is a descriptor for a newly created connection; the socket is now ready for read, write or poll/select system calls:
if((cnt = sendfile(client,fd,&off,
BUFF_SIZE)) < 0){
perror("sendfile");
exit(errno);
}
printf("Server sent %d bytes.\n", cnt);
close(client);
A connection is established on the client socket descriptor, so we can start transmitting data to the remote system. We do this by calling the sendfile system call, which is prototyped under Linux in the following manner:
extern ssize_t
sendfile (int __out_fd, int __in_fd, off_t *offset,
size_t __count) __THROW;
The first two parameters are file descriptors. The third parameter points to an offset from which sendfile should start sending data. The fourth parameter is the number of bytes we want to transmit. In order for the sendfile transmit to use zero-copy functionality, you need memory gather operation support from your networking card. You also need checksum capabilities for protocols that implement checksums, such as TCP or UDP. If your NIC is outdated and doesn't support those features, you still can use sendfile to transmit files. The difference is the kernel will merge the buffers before transmitting them.
One of the problems with the sendfile system call, in general, is the lack of a standard implementation, as there is for the open system call. Sendfile implementations in Linux, Solaris or HP-UX are quite different. This poses a problem for developers who wish to use zero copy in their network data transmission code.
One of the implementation differences is Linux provides a sendfile that defines an interface for transmitting data between two file descriptors (file-to-file) and (file-to-socket). HP-UX and Solaris, on the other hand, can be used only for file-to-socket submissions.
The second difference is Linux doesn't implement vectored transfers. Solaris sendfile and HP-UX sendfile have extra parameters that eliminate overhead associated with prepending headers to the data being transmitted.
The implementation of zero copy under Linux is far from finished and is likely to change in the near future. More functionality should be added. For example, the sendfile call doesn't support vectored transfers, and servers such as Samba and Apache have to use multiple sendfile calls with the TCP_CORK flag set. This flag tells the system more data is coming through in the next sendfile calls. TCP_CORK also is incompatible with TCP_NODELAY and is used when we want to prepend or append headers to the data. This is a perfect example of where a vectored call would eliminate the need for multiple sendfile calls and delays mandated by the current implementation.
One rather unpleasant limitation in the current sendfile is it cannot be used when transferring files greater than 2GB. Files of such size are not all that uncommon today, and it's rather disappointing having to duplicate all that data on its way out. Because both sendfile and mmap methods are unusable in this case, a sendfile64 would be really handy in a future kernel version.
Despite some drawbacks, zero-copy sendfile is a useful feature, and I hope you have found this article informative enough to start using it in your programs. If you have a more in-depth interest in the subject, keep an eye out for my second article, titled “Zero Copy II: Kernel Perspective”, where I will dig a bit more into the kernel internals of zero copy.
email: visitor@xalien.org
Dragan Stancevic is a kernel and hardware bring-up engineer in his late twenties. He is a software engineer by profession but has a deep interest in applied physics and has been known to play with extremely high voltages in his free time.
Efficient data transfer through zero copy的更多相关文章
- Zore copy(翻译《Efficient data transfer through zero copy》)
原文:https://www.ibm.com/developerworks/library/j-zerocopy/ <Efficient data transfer through zero c ...
- PatentTips - Cross-domain data transfer using deferred page remapping
BACKGROUND OF THE INVENTION The present invention relates to data transfer across domains, and more ...
- PatentTips – RDMA data transfer in a virtual environment
BACKGROUND Embodiments of this invention relate to RDMA (remote direct memory access) data transfer ...
- OpenHCI - Data Transfer Types
There are four data transfer types defined in USB(USB中有4种数据传输类型). Each type is optimized to match th ...
- UDT: Breaking the Data Transfer Bottleneck
http://udt.sourceforge.net/ DT is a reliable UDP based application level data transport protocol for ...
- ISO 9141-2 and ISO 14230-2 INITIALIZATION and DATA TRANSFER
http://ecad.tu-sofia.bg/et/2005/pdf/Paper097-P_Dzhelekarski1.pdf INITIALIZATION Prior to any diagnos ...
- Data transfer object
Data transfer object (DTO) is a design pattern used to transfer data between software application su ...
- Data transfer from GPIO port to RAM buffer using DMA upon receiving a trigger signal on the timer capture input channel.
Data transfer from GPIO port to RAM buffer using DMA upon receiving a trigger signal on the timer ca ...
- STM32 GPIO fast data transfer with DMA
AN2548 -- 使用 STM32F101xx 和 STM32F103xx 的 DMA 控制器 DMA控制器 DMA是AMBA的先进高性能总线(AHB)上的设备,它有2个AHB端口: 一个是从端口, ...
随机推荐
- linux下编译 静态库、动态库,动态库依赖静态库
xx.o : xx.h xx.cpp -lstdc++ -o xx.o -c xx.cpp -I ./ libxx.a : xx.o ar -crv libxx.a xx.o libTest.so : ...
- oracle 存储过程学习感悟
1.跟大白话差不多 2.if...then.... else ....写的比较多 3.调用存储过程命令:execute procedure_name 4.调用存储函数命令:select '0' str ...
- 一款基于jQuery的带Tooltip表单验证的注册表单
今天给大家分享一款基于jQuery的注册表单,这款注册表单的特点是确认提交注册信息时,表单会自动验证所填写的信息,如果信息填写有误,即会在相应的字段内以Tooltip提示框的形式显示错误信息.这款jQ ...
- C语言 · 约数个数
算法提高 约数个数 时间限制:1.0s 内存限制:512.0MB 输入一个正整数N,输出其约数的个数. 样例输入 12 样例输出 6 样例说明 12的约数包括:1,2,3,4,6,1 ...
- CSS(五):背景、列表、超链接伪类、鼠标形状控制属性
一.背景属性 1.背景属性用来设置页面元素的背景样式. 2.常见背景属性 属性 描述 background-color 用来设置页面的背景色,取值如red,#ff0000 background-ima ...
- Istio流量管理实现机制深度解析
https://zhaohuabing.com/post/2018-09-25-istio-traffic-management-impl-intro/TOC 前言 Pilot高层架构 统一的服务模型 ...
- golang Time to String
golang Time to String allenhaozi · 2016-09-02 09:00:00 · 2447 次点击 · 预计阅读时间 1 分钟 · 19分钟之前 开始浏览 这是一个创建 ...
- 通过策略接口,Spring 框架是高度可配置的,而且包含多种视图技术
通过策略接口,Spring 框架是高度可配置的,而且包含多种视图技术,例如 JavaServer Pages( JSP)技术.Velocity.Tiles.iText 和 POI.Spring MVC ...
- erlang-sunface的博客地址
erlang-sunface的博客地址: http://blog.csdn.net/abv123456789/article/category/2206185
- 登陆Oracle11g的企业管理器
本地:https://localhost:1158/em/ 如果远程:那么把localhost换成服务器IP