Kalibr installation tutorial
Kalibr installation tutorial
I was confused about installing Kalibr, but there is no even one hint in README.md. I just put them in the catkin_ws, in which so many ROS packages are also there. Unsuccessfully, it can't be compiled one by one package by the command catkin_make -DCATKIN_WHITELIST_PACKAGE="PACKAGE_NAME"
. It means a good choice is to build another ROS workspace in case of rebuilding others in the same workspace.
Resiquite:
sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen libopencv-dev ros-kinetic-vision-opencv ros-kinetic-image-transport-plugins ros-kinetic-cmake-modules python-software-properties software-properties-common libpoco-dev python-matplotlib python-scipy python-git python-pip ipython libtbb-dev libblas-dev liblapack-dev python-catkin-tools libv4l-dev
sudo pip install python-igraph --upgrade
Warning: If having done catkin_make at first then must run the following command.
catkin clean -bdy
cd ~
mkdir -p kalibr_ws/src
cd ~/kalibr_ws
source /opt/ros/kinetic/setup.bash
catkin init
catkin config --extend /opt/ros/kinetic
catkin config --merge-devel # Necessary for catkin_tools >= 0.4. catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
cd ~/kalibr_ws/src
git clone https://github.com/ethz-asl/kalibr.git
cd ..
catkin build -DCMAKE_BUILD_TYPE=Release -j4
Output seems like this:
Finished <<< kalibr [ 16.1 seconds ]
[build] Summary: All 37 packages succeeded!
[build] Ignored: None.
[build] Warnings: 21 packages succeeded with warnings.
[build] Abandoned: None.
[build] Failed: None.
[build] Runtime: 14 minutes and 53.4 seconds total.
[build] Note: Workspace packages have changed, please re-source setup files to use them.
source ~/kalibr_ws/devel/setup.bash
Update:
Traceback (most recent call last):
File "../python/kalibr_calibrate_cameras", line 6, in <module>
import sm
ImportError: No module named sm
**Solution: **
sudo pip install sm
then rebuild kalibr.
References:
[1] kalibr教程
[2] Installing and Configuring Your ROS Environment
[3] ethz-asl/kalibr
[4] catkin_make vs catkin build
[5] https://github.com/ethz-asl/kalibr/wiki/installation
[6] 完整版用kalibr标定 camera imu
Multiple camera calibration
roslaunch realsense2_camera rs_camera.launch
rosrun topic_tools throttle messages /camera/color/image_raw 4.0 /color
rosbag record -O rs_cam_hz4 /color
Which distortiong model should be choose for Realsense D435i? From all I know, a factory calibration setup of D435i looks like: (You can /usr/local/bin/rs-sensor-control
, type 0, 1, 2, 91 etc to see)
Principal Point : 322.424, 237.813
Focal Length : 617.521, 617.576
Distortion Model : Brown Conrady
Distortion Coefficients : [0,0,0,0,0]
And according to the dorodnic, of course a equidistant distortion model could be used. (But r1 & r2 are needed in realsense comfig in vins. So the best distortion model must be radial-tangential (radtan))
Yes, these are supposed to be zero for the D400. We consider adding coefficient estimation to the RGB calibration to reduce the distortion (by about 1 pixel at extremes), but at the moment projection without coefficients is the most accurate you can do (we are not calibrating and then ignoring the coefficients, we estimate fx, fy, ppx and ppy without them)
cd ~/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/data
../python/kalibr_calibrate_cameras --target april_6x6_50x50cm.yaml --bag rs_cam_hz4.bag --models pinhole-equi --topics /color
Note that in the bag file there are up to 800 images, but it only 39. Maybe that's enough for calibration?
Output:
Calibration complete.
[ WARN] [1556719991.003758]: Removed 26 outlier corners.
Processed 826 images with 39 images used
Camera-system parameters:
cam0 (/color):
type: <class 'aslam_cv.libaslam_cv_python.EquidistantDistortedPinholeCameraGeometry'>
distortion: [ 0.3044413 2.04741574 -11.06112629 18.6743852 ] +- [ 0.0320288 0.46759766 2.76374537 5.41971393]
projection: [ 604.9671891 602.10506316 325.8395051 238.35406753] +- [ 10.62286295 10.41921913 1.68531874 1.43868064]
reprojection error: [-0.000000, -0.000000] +- [0.153693, 0.138547]
Results written to file: camchain-rs_cam_hz4.yaml
Detailed results written to file: results-cam-rs_cam_hz4.txt
Result:
camchain-rs_cam_hz4.yaml
cam0:
cam_overlaps: []
camera_model: pinhole
distortion_coeffs: [0.3044413037380324, 2.0474157424478348, -11.061126286843251,
18.67438520203368]
distortion_model: equidistant
intrinsics: [604.9671890973748, 602.1050631617551, 325.83950509989114, 238.35406753467785]
resolution: [640, 480]
rostopic: /color
Compared to the default settings, assumes our result is accurate. The reprojection error seems like good too.
Reference:
[1] Multiple camera calibration
[2] [相机标定]RealSense D435i相机标定
[3] rs2_intrinsics coeffs[] all 0 by default #1430
[4] Camera models
IMU calibration
imu_utils from HKUST
Protecting from error:
CMake Warning at /opt/ros/kinetic/share/catkin/cmake/catkinConfig.cmake:76 (find_package):
Could not find a package configuration file provided by "code_utils" with
any of the following names:
code_utilsConfig.cmake
code_utils-config.cmake
Add the installation prefix of "code_utils" to CMAKE_PREFIX_PATH or set
"code_utils_DIR" to a directory containing one of the above files. If
"code_utils" provides a separate development package or SDK, be sure it has
been installed.
Put code_utils in the workspace, catkin_make first.
Then do the same for imu_utils.
Result (BMI055 is the IMU D435i is using):
BMI055_imu_param.yaml
%YAML:1.0
---
type: IMU
name: BMI055
Gyr:
unit: " rad/s"
avg-axis:
gyr_n: 6.0673370376614875e-03
gyr_w: 3.6211951458325785e-05
x-axis:
gyr_n: 5.4501442406047970e-03
gyr_w: 4.0723401163659986e-05
y-axis:
gyr_n: 5.9380128602687073e-03
gyr_w: 2.9388325769986972e-05
z-axis:
gyr_n: 6.8138540121109601e-03
gyr_w: 3.8524127441330383e-05
Acc:
unit: " m/s^2"
avg-axis:
acc_n: 3.3621979208052800e-02
acc_w: 9.8256589971851467e-04
x-axis:
acc_n: 3.6095477320173631e-02
acc_w: 9.6831827726998488e-04
y-axis:
acc_n: 3.4696437020780901e-02
acc_w: 1.3092042863834673e-03
z-axis:
acc_n: 3.0074023283203882e-02
acc_w: 6.7017513550209160e-04
[1] imu标定 imu_tk
[2] Imu_tk算法流程
[3] catkin_make failed #3
[4] imu_utils
[5] code_utils
camera/IMU calibration
roscd realsense2_camera/
roslaunch realsense2_camera rs_camera.launch
rostopic hz /camera/imu
rostopic hz /camera/color/image_raw
rosrun topic_tools throttle messages /camera/color/image_raw 20.0 /color
rosrun topic_tools throttle messages /camera/imu 200.0 /imu
Some problem:
In the rs_camera.launch, but when I check the frequency: IMU is 150 Hz and the camera is 15FPS. It can't be slow down to the frequency needed.
<arg name="color_fps" default="30"/>
<arg name="gyro_fps" default="200"/> <!-- 200 or 400-->
<arg name="accel_fps" default="250"/> <!-- 63 or 250-->
The best frequency is 200 Hz and 30 Hz. Of course, others are still good.
rosbag record -O rs_cam15hz_imu150hz.bag /color /imu
camchain-rs_cam_hz4.yaml
cam0:
cam_overlaps: []
camera_model: pinhole
distortion_coeffs: [0.3044413037380324, 2.0474157424478348, -11.061126286843251,
18.67438520203368]
distortion_model: equidistant
intrinsics: [604.9671890973748, 602.1050631617551, 325.83950509989114, 238.35406753467785]
resolution: [640, 480]
rostopic: /color
imu.yaml
rostopic: /imu
update_rate: 150.0 #Hz
accelerometer_noise_density: 3.3621979208052800e-02 #continous
accelerometer_random_walk: 9.8256589971851467e-04
gyroscope_noise_density: 6.0673370376614875e-03 #continous
gyroscope_random_walk: 3.6211951458325785e-05
roscd kalibr
cd data
cp ~/catkin_ws/src/realsense/realsense2_camera/rs_cam15hz_imu150hz.bag .
../python/kalibr_calibrate_imu_camera --target april_6x6_50x50cm.yaml --cam camchain-rs_cam_hz4.yaml --imu imu-BMI055.yaml --bag rs_cam15hz_imu150hz.bag
Note that when something is wrong with the input data in bagfile, just record another one bagfile.
Initializing
Optimization problem initialized with 101968 design variables and 1079428 error terms
The Jacobian matrix is 2310198 x 458841
[0.0]: J: 1.35165e+06
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
[ERROR] [1556773048.921808]: Optimization failed!
Traceback (most recent call last):
File "../python/kalibr_calibrate_imu_camera", line 236, in <module>
main()
File "../python/kalibr_calibrate_imu_camera", line 206, in main
iCal.optimize(maxIterations=parsed.max_iter, recoverCov=parsed.recover_cov)
File "/home/william/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_imu_camera_calibration/IccCalibrator.py", line 179, in optimize
raise RuntimeError("Optimization failed!")
RuntimeError: Optimization failed!
Result looks like this:
After Optimization (Results)
==================
Normalized Residuals
----------------------------
Reprojection error (cam0): mean 0.169417479013, median 0.154212672023, std: 0.0973946838993
Gyroscope error (imu0): mean 0.18574054756, median 0.159830346682, std: 0.115913332564
Accelerometer error (imu0): mean 0.169497068217, median 0.145829709726, std: 0.10939033445
Residuals
----------------------------
Reprojection error (cam0) [px]: mean 0.169417479013, median 0.154212672023, std: 0.0973946838993
Gyroscope error (imu0) [rad/s]: mean 0.013802268496, median 0.0118768970357, std: 0.00861345010194
Accelerometer error (imu0) [m/s^2]: mean 0.0697960902289, median 0.0600502633182, std: 0.0450451310679
Transformation T_cam0_imu0 (imu0 to cam0, T_ci):
[[ 0.01542341 -0.99976267 0.01538561 0.00713584]
[ 0.03147917 -0.01489429 -0.99939343 -0.03487332]
[ 0.9993854 0.01589838 0.03124198 -0.05266484]
[ 0. 0. 0. 1. ]]
cam0 to imu0 time: [s] (t_imu = t_cam + shift)
0.0334634768386
IMU0:
----------------------------
Model: calibrated
Update rate: 150.0
Accelerometer:
Noise density: 0.0336219792081
Noise density (discrete): 0.411783466011
Random walk: 0.000982565899719
Gyroscope:
Noise density: 0.00606733703766
Noise density (discrete): 0.0743093991988
Random walk: 3.62119514583e-05
T_i_b
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]
[ 0. 0. 0. 1.]]
time offset with respect to IMU0: 0.0 [s]
Saving camera chain calibration to file: camchain-imucam-rs_cam15hz_imu150hz.yaml
Saving imu calibration to file: imu-rs_cam15hz_imu150hz.yaml
Detailed results written to file: results-imucam-rs_cam15hz_imu150hz.txt
Generating result report...
/home/william/kalibr_ws/src/kalibr/Schweizer-Messer/sm_python/python/sm/PlotCollection.py:57: wxPyDeprecationWarning: Using deprecated class PySimpleApp.
app = wx.PySimpleApp()
Report written to report-imucam-rs_cam15hz_imu150hz.pdf
References:
[1] Kalibr 标定双目内外参数以及 IMU 外参数
[2] [相机标定]RealSense D435i相机标定
[3] Problem with single imu and single cam Optimization failed #223
Kalibr installation tutorial的更多相关文章
- HP LoadRunner 12.02 Tutorial T7177-88037教程独家中文版
HP LoadRunner 12.02 Tutorial T7177-88037教程独家中文版 Tylan独家呕血翻译 转载请注明出自“天外归云”的博客园 Welcome to the LoadRun ...
- Python 之 MySQL 操作库 lazy_mysql
TOC Intro Installation Tutorial API Engine Pool Column Table Intro lazy_mysql 是一个非常简单易用,用来操作 MySQL 的 ...
- openbr on linuxmint13/ubuntu12.04/debian7 x64 facial recognition [Compile from source!!!]
Openbr is a great project for facial detecting. System: linuxmint 13 x86_64 Face recognition, motio ...
- linux mint 安装 opencv2.4
Download opencv https://github.com/opencv/opencv/tree/2.4 安装必要的依赖 sudo apt-get install build-essenti ...
- Linux--Introduction and Basic commands(Part one)
Welcome to Linux world! Introduction and Basic commands--Part one J.C 2018.3.11 Chapter 1 What Is Li ...
- LoadRuner12.53教程(三)
教训1:建立一个Vuser Script jiào教 xùn训 1 : jiàn建 lì立 yī一 gè个 V u s e r S c r ...
- Spring Boot Reference Guide
Spring Boot Reference Guide Authors Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch, ...
- hbase-indexer官网wiki
Home Requirements Getting Started Installation Tutorial Demo Indexer Configuration CLI tools Metrics ...
- Ubuntu16手动安装OpenStack——glance篇--转
全文转自https://www.voidking.com/dev-ubuntu16-manual-openstack-glance/ 目标 紧接着<Ubuntu16手动安装OpenStack—— ...
随机推荐
- Linux环境下安装myeclipse+破解
1.下载myeclipse安装包,下载myeclipse破解文件. 2.修改myeclipse-pro-2014-GA-offline-installer-linux.run的权限 sudo chmo ...
- C#中实例Singleton
[C#中实例Singleton] 1.经典方案: using System; public class Singleton { private static Singleton instance; p ...
- 通过args数组获取数据
----------siwuxie095 通过 main 方法的 args数组 可以从控制台获取一组字符串数据 如: package com.s ...
- 如何安装Zend Studio 以及汉化和基本准备工作
昨天从早上一直弄到晚上10点,可累死我了,网上的资料都是掺次不齐,所以我写一篇系统点的文章来告诉大家怎么做. 1.如果你想进行一套PHP系统的开发,肯定是要有“尚方宝剑”的,这个尚方宝剑就是PHP工具 ...
- eclipse 使用 scons 编译的配置说明
eclipse版本: eclipse-cpp-kepler-SR1-win32.zip 创建项目必须选择“Makefile Project” 然后进入“Projects Properities” 先 ...
- spring4-3-AOP-AspectJ注解-01-简单使用
1.引入类库 <dependency> <groupId>org.springframework</groupId> <artifactId>sprin ...
- Linux Bash脚本编程语言中的美学与哲学
我承认,我再一次地当了标题党.但是不可否认,这一定是一篇精华随笔.在这一篇中,我将探讨Bash脚本语言中的美学与哲学. 这不是一篇Bash脚本编程的教程,但是却能让人更加深入地了解Bash脚本编程,更 ...
- code1316 文化之旅
文化之旅的本质是最短路问题,只不过添加了一个文化排斥,仅需要做最短路时判断一下是否排斥即可 因为数据较小,采用了Floyd算法,以下是代码,关键部分附注释: #include<iostream& ...
- Python和JavaScript间代码转换4个工具
Python 还是 JavaScript?虽然不少朋友还在争论二者目前谁更强势.谁又拥有着更为光明的发展前景,但毫无疑问,二者的竞争在 Web 前端领域已经拥有明确的答案.立足于浏览器平台,如果放弃 ...
- LWIP内存管理
LWIP是一种TCP/IP协议栈,与嵌入式操作系统一样也提供了内存管理. 内存池里面有多个同样大小的内存,不同类型的内存池其里面的内存大小不一样.