Kalibr installation tutorial

I was confused about installing Kalibr, but there is no even one hint in README.md. I just put them in the catkin_ws, in which so many ROS packages are also there. Unsuccessfully, it can't be compiled one by one package by the command catkin_make -DCATKIN_WHITELIST_PACKAGE="PACKAGE_NAME". It means a good choice is to build another ROS workspace in case of rebuilding others in the same workspace.


Resiquite:

sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen libopencv-dev ros-kinetic-vision-opencv ros-kinetic-image-transport-plugins ros-kinetic-cmake-modules python-software-properties software-properties-common libpoco-dev python-matplotlib python-scipy python-git python-pip ipython libtbb-dev libblas-dev liblapack-dev python-catkin-tools libv4l-dev

sudo pip install python-igraph --upgrade


Warning: If having done catkin_make at first then must run the following command.

catkin clean -bdy


cd ~
mkdir -p kalibr_ws/src
cd ~/kalibr_ws
source /opt/ros/kinetic/setup.bash
catkin init
catkin config --extend /opt/ros/kinetic
catkin config --merge-devel # Necessary for catkin_tools >= 0.4. catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
cd ~/kalibr_ws/src
git clone https://github.com/ethz-asl/kalibr.git
cd ..
catkin build -DCMAKE_BUILD_TYPE=Release -j4

Output seems like this:

Finished  <<< kalibr                                        [ 16.1 seconds ]
[build] Summary: All 37 packages succeeded!
[build] Ignored: None.
[build] Warnings: 21 packages succeeded with warnings.
[build] Abandoned: None.
[build] Failed: None.
[build] Runtime: 14 minutes and 53.4 seconds total.
[build] Note: Workspace packages have changed, please re-source setup files to use them.

source ~/kalibr_ws/devel/setup.bash

Update:


Traceback (most recent call last):
File "../python/kalibr_calibrate_cameras", line 6, in <module>
import sm
ImportError: No module named sm

**Solution: **

sudo pip install sm

then rebuild kalibr.


References:

[1] kalibr教程

[2] Installing and Configuring Your ROS Environment

[3] ethz-asl/kalibr

[4] catkin_make vs catkin build

[5] https://github.com/ethz-asl/kalibr/wiki/installation

[6] 完整版用kalibr标定 camera imu

Multiple camera calibration


roslaunch realsense2_camera rs_camera.launch
rosrun topic_tools throttle messages /camera/color/image_raw 4.0 /color
rosbag record -O rs_cam_hz4 /color

Which distortiong model should be choose for Realsense D435i? From all I know, a factory calibration setup of D435i looks like: (You can /usr/local/bin/rs-sensor-control, type 0, 1, 2, 91 etc to see)

Principal Point         : 322.424, 237.813
Focal Length : 617.521, 617.576
Distortion Model : Brown Conrady
Distortion Coefficients : [0,0,0,0,0]

And according to the dorodnic, of course a equidistant distortion model could be used. (But r1 & r2 are needed in realsense comfig in vins. So the best distortion model must be radial-tangential (radtan))

Yes, these are supposed to be zero for the D400. We consider adding coefficient estimation to the RGB calibration to reduce the distortion (by about 1 pixel at extremes), but at the moment projection without coefficients is the most accurate you can do (we are not calibrating and then ignoring the coefficients, we estimate fx, fy, ppx and ppy without them)

cd ~/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/data
../python/kalibr_calibrate_cameras --target april_6x6_50x50cm.yaml --bag rs_cam_hz4.bag --models pinhole-equi --topics /color

Note that in the bag file there are up to 800 images, but it only 39. Maybe that's enough for calibration?

Output:

Calibration complete.

[ WARN] [1556719991.003758]: Removed 26 outlier corners.

Processed 826 images with 39 images used
Camera-system parameters:
cam0 (/color):
type: <class 'aslam_cv.libaslam_cv_python.EquidistantDistortedPinholeCameraGeometry'>
distortion: [ 0.3044413 2.04741574 -11.06112629 18.6743852 ] +- [ 0.0320288 0.46759766 2.76374537 5.41971393]
projection: [ 604.9671891 602.10506316 325.8395051 238.35406753] +- [ 10.62286295 10.41921913 1.68531874 1.43868064]
reprojection error: [-0.000000, -0.000000] +- [0.153693, 0.138547] Results written to file: camchain-rs_cam_hz4.yaml
Detailed results written to file: results-cam-rs_cam_hz4.txt

Result:

camchain-rs_cam_hz4.yaml

cam0:
cam_overlaps: []
camera_model: pinhole
distortion_coeffs: [0.3044413037380324, 2.0474157424478348, -11.061126286843251,
18.67438520203368]
distortion_model: equidistant
intrinsics: [604.9671890973748, 602.1050631617551, 325.83950509989114, 238.35406753467785]
resolution: [640, 480]
rostopic: /color

Compared to the default settings, assumes our result is accurate. The reprojection error seems like good too.

Reference:

[1] Multiple camera calibration

[2] [相机标定]RealSense D435i相机标定

[3] rs2_intrinsics coeffs[] all 0 by default #1430

[4] Camera models

IMU calibration


imu_utils from HKUST

Protecting from error:

CMake Warning at /opt/ros/kinetic/share/catkin/cmake/catkinConfig.cmake:76 (find_package):
Could not find a package configuration file provided by "code_utils" with
any of the following names:
code_utilsConfig.cmake
code_utils-config.cmake
Add the installation prefix of "code_utils" to CMAKE_PREFIX_PATH or set
"code_utils_DIR" to a directory containing one of the above files. If
"code_utils" provides a separate development package or SDK, be sure it has
been installed.

Put code_utils in the workspace, catkin_make first.

Then do the same for imu_utils.

Result (BMI055 is the IMU D435i is using):

BMI055_imu_param.yaml

%YAML:1.0
---
type: IMU
name: BMI055
Gyr:
unit: " rad/s"
avg-axis:
gyr_n: 6.0673370376614875e-03
gyr_w: 3.6211951458325785e-05
x-axis:
gyr_n: 5.4501442406047970e-03
gyr_w: 4.0723401163659986e-05
y-axis:
gyr_n: 5.9380128602687073e-03
gyr_w: 2.9388325769986972e-05
z-axis:
gyr_n: 6.8138540121109601e-03
gyr_w: 3.8524127441330383e-05
Acc:
unit: " m/s^2"
avg-axis:
acc_n: 3.3621979208052800e-02
acc_w: 9.8256589971851467e-04
x-axis:
acc_n: 3.6095477320173631e-02
acc_w: 9.6831827726998488e-04
y-axis:
acc_n: 3.4696437020780901e-02
acc_w: 1.3092042863834673e-03
z-axis:
acc_n: 3.0074023283203882e-02
acc_w: 6.7017513550209160e-04

[1] imu标定 imu_tk

[2] Imu_tk算法流程

[3] catkin_make failed #3

[4] imu_utils

[5] code_utils

camera/IMU calibration


roscd realsense2_camera/
roslaunch realsense2_camera rs_camera.launch
rostopic hz /camera/imu
rostopic hz /camera/color/image_raw

rosrun topic_tools throttle messages /camera/color/image_raw 20.0 /color

rosrun topic_tools throttle messages /camera/imu 200.0 /imu

Some problem:

In the rs_camera.launch, but when I check the frequency: IMU is 150 Hz and the camera is 15FPS. It can't be slow down to the frequency needed.

  <arg name="color_fps"           default="30"/>
<arg name="gyro_fps" default="200"/> <!-- 200 or 400-->
<arg name="accel_fps" default="250"/> <!-- 63 or 250-->

The best frequency is 200 Hz and 30 Hz. Of course, others are still good.

rosbag record -O rs_cam15hz_imu150hz.bag /color /imu

camchain-rs_cam_hz4.yaml

cam0:
cam_overlaps: []
camera_model: pinhole
distortion_coeffs: [0.3044413037380324, 2.0474157424478348, -11.061126286843251,
18.67438520203368]
distortion_model: equidistant
intrinsics: [604.9671890973748, 602.1050631617551, 325.83950509989114, 238.35406753467785]
resolution: [640, 480]
rostopic: /color

imu.yaml

rostopic: /imu
update_rate: 150.0 #Hz accelerometer_noise_density: 3.3621979208052800e-02 #continous
accelerometer_random_walk: 9.8256589971851467e-04
gyroscope_noise_density: 6.0673370376614875e-03 #continous
gyroscope_random_walk: 3.6211951458325785e-05
roscd kalibr
cd data
cp ~/catkin_ws/src/realsense/realsense2_camera/rs_cam15hz_imu150hz.bag .
../python/kalibr_calibrate_imu_camera --target april_6x6_50x50cm.yaml --cam camchain-rs_cam_hz4.yaml --imu imu-BMI055.yaml --bag rs_cam15hz_imu150hz.bag

Note that when something is wrong with the input data in bagfile, just record another one bagfile.


Initializing
Optimization problem initialized with 101968 design variables and 1079428 error terms
The Jacobian matrix is 2310198 x 458841
[0.0]: J: 1.35165e+06
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
Exception in thread block: [aslam::Exception] /home/william/kalibr_ws/src/kalibr/aslam_nonparametric_estimation/aslam_splines/src/BSplineExpressions.cpp:447: toTransformationMatrixImplementation() assert(_bufferTmin <= _time.toScalar() < _bufferTmax) failed [1.55677e+09 <= 1.55677e+09 < 1.55677e+09]: Spline Coefficient Buffer Exceeded. Set larger buffer margins!
[ERROR] [1556773048.921808]: Optimization failed!
Traceback (most recent call last):
File "../python/kalibr_calibrate_imu_camera", line 236, in <module>
main()
File "../python/kalibr_calibrate_imu_camera", line 206, in main
iCal.optimize(maxIterations=parsed.max_iter, recoverCov=parsed.recover_cov)
File "/home/william/kalibr_ws/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_imu_camera_calibration/IccCalibrator.py", line 179, in optimize
raise RuntimeError("Optimization failed!")
RuntimeError: Optimization failed!

Result looks like this:

After Optimization (Results)
==================
Normalized Residuals
----------------------------
Reprojection error (cam0): mean 0.169417479013, median 0.154212672023, std: 0.0973946838993
Gyroscope error (imu0): mean 0.18574054756, median 0.159830346682, std: 0.115913332564
Accelerometer error (imu0): mean 0.169497068217, median 0.145829709726, std: 0.10939033445 Residuals
----------------------------
Reprojection error (cam0) [px]: mean 0.169417479013, median 0.154212672023, std: 0.0973946838993
Gyroscope error (imu0) [rad/s]: mean 0.013802268496, median 0.0118768970357, std: 0.00861345010194
Accelerometer error (imu0) [m/s^2]: mean 0.0697960902289, median 0.0600502633182, std: 0.0450451310679 Transformation T_cam0_imu0 (imu0 to cam0, T_ci):
[[ 0.01542341 -0.99976267 0.01538561 0.00713584]
[ 0.03147917 -0.01489429 -0.99939343 -0.03487332]
[ 0.9993854 0.01589838 0.03124198 -0.05266484]
[ 0. 0. 0. 1. ]] cam0 to imu0 time: [s] (t_imu = t_cam + shift)
0.0334634768386 IMU0:
----------------------------
Model: calibrated
Update rate: 150.0
Accelerometer:
Noise density: 0.0336219792081
Noise density (discrete): 0.411783466011
Random walk: 0.000982565899719
Gyroscope:
Noise density: 0.00606733703766
Noise density (discrete): 0.0743093991988
Random walk: 3.62119514583e-05
T_i_b
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]
[ 0. 0. 0. 1.]]
time offset with respect to IMU0: 0.0 [s] Saving camera chain calibration to file: camchain-imucam-rs_cam15hz_imu150hz.yaml Saving imu calibration to file: imu-rs_cam15hz_imu150hz.yaml
Detailed results written to file: results-imucam-rs_cam15hz_imu150hz.txt
Generating result report...
/home/william/kalibr_ws/src/kalibr/Schweizer-Messer/sm_python/python/sm/PlotCollection.py:57: wxPyDeprecationWarning: Using deprecated class PySimpleApp.
app = wx.PySimpleApp()
Report written to report-imucam-rs_cam15hz_imu150hz.pdf

References:

[1] Kalibr 标定双目内外参数以及 IMU 外参数

[2] [相机标定]RealSense D435i相机标定

[3] Problem with single imu and single cam Optimization failed #223

Kalibr installation tutorial的更多相关文章

  1. HP LoadRunner 12.02 Tutorial T7177-88037教程独家中文版

    HP LoadRunner 12.02 Tutorial T7177-88037教程独家中文版 Tylan独家呕血翻译 转载请注明出自“天外归云”的博客园 Welcome to the LoadRun ...

  2. Python 之 MySQL 操作库 lazy_mysql

    TOC Intro Installation Tutorial API Engine Pool Column Table Intro lazy_mysql 是一个非常简单易用,用来操作 MySQL 的 ...

  3. openbr on linuxmint13/ubuntu12.04/debian7 x64 facial recognition [Compile from source!!!]

    Openbr is a great project for facial detecting. System: linuxmint 13 x86_64 Face recognition,  motio ...

  4. linux mint 安装 opencv2.4

    Download opencv https://github.com/opencv/opencv/tree/2.4 安装必要的依赖 sudo apt-get install build-essenti ...

  5. Linux--Introduction and Basic commands(Part one)

    Welcome to Linux world! Introduction and Basic commands--Part one J.C 2018.3.11 Chapter 1 What Is Li ...

  6. LoadRuner12.53教程(三)

    教训1:建立一个Vuser Script jiào教   xùn训   1   :   jiàn建   lì立   yī一   gè个   V   u   s   e   r   S   c   r ...

  7. Spring Boot Reference Guide

    Spring Boot Reference Guide Authors Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch,  ...

  8. hbase-indexer官网wiki

    Home Requirements Getting Started Installation Tutorial Demo Indexer Configuration CLI tools Metrics ...

  9. Ubuntu16手动安装OpenStack——glance篇--转

    全文转自https://www.voidking.com/dev-ubuntu16-manual-openstack-glance/ 目标 紧接着<Ubuntu16手动安装OpenStack—— ...

随机推荐

  1. 使用ControllerClassNameHandlerMapping实现SpringMVC的CoC配置

    使用CoC,惯例优先原则(convention over configuration)的方式来配置SpringMVC可以帮我们声明Controller的时候省下很多功夫. 只要我们的Controlle ...

  2. space defender,太空版植物大战僵尸 游戏基本框架的设计

  3. 使用jquery修改表单的提交地址

    基本思路: 通过使用jquery选择器得到对应表单的jquery对象,然后使用attr方法修改对应的action 示例程序一: 默认情况下,该表单会提交到page_one.html 点击button之 ...

  4. 100. Same Tree同样的树

    [抄题]: Given two binary trees, write a function to check if they are the same or not. Two binary tree ...

  5. zabbix自定义key监控redis

    一.启动redis-server cd /data/redis redis-server redis.conf (根据自己的环境启动redis) 测试脚本(写入1000个数据): seq |while ...

  6. Python 与 Javascript 比较

    最近由于工作的需要开始开发一些Python的东西,由于之前一直在使用Javascript,所以会不自觉的使用一些Javascript的概念,语法什么的,经常掉到坑里.我觉得对于从Javascript转 ...

  7. mount命令使用

    mount命令是一个很常用的命令,这里介绍两个服务器上之间的挂载 1 配置NFS服务 FTP服务器提供NFS服务,开放具体路径(/home/hadoop)完全控制权限给其他板子.可以将两个板子之间建立 ...

  8. DESC和 ACS

    用 DESC 表示按倒序排序(即:从大到小排序)用 ACS 表示按正序排序(即:从小到大排序)

  9. mysql json格式数据处理

    1.查询字段所对应的值: SELECT c.result_http->"$.create_time",json_extract(c.result_http,"$.e ...

  10. javascript总结40:DOM中操作样式的两种方式

    1 DOM中操作样式的两种方式 1 通过元素的style属性 注意: 通过style属性设置样式时,css中要写单位的属性,在js代码中也要加单位 //html <div id="bo ...