题面:[HNOI2009]有趣的数列

题解:

  观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b。

  2种想法(实质上是一样的)。

  1,相当于前1位中至少要选1个放入a,前3位中至少要选2位放入a,前5位中至少要选3位放入a......前2n - 1位中恰好选n位放入a。

  2,用0表示放入a集合,1表示放入b集合。则每个1都必须有一个左边的0与之匹配,相当于对于任意位置前面0的个数大于等于1的个数。

  不管是哪种,其实都可以看做括号匹配问题。。。。。。所以就是卡特兰数了

  因为n比较大,且p不一定为质数,因此可以用一个数组存下每个质因子有几个,对于乘法就累加,除法就减掉,然后把最后剩下的累乘起来就是答案。

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 2001000
#define maxn 2000000
#define LL long long int tot, n, p;
int pri[AC], last[AC];
LL have[AC], ans;
bool ispri[AC]; void get()
{
last[] = ;
for(R i = ; i <= maxn; i ++)
{
if(!ispri[i]) pri[++ tot] = i, last[i] = i;
for(R j = ; j <= tot; j ++)
{
int now = pri[j];
if(i * now > maxn) break;
ispri[i * now] = true, last[i * now] = now;
if(!(i % now)) break;
}
}
} void pre(){
scanf("%d%d", &n, &p);
} inline void cal(int x){//分解质因数
while(last[x] != ) ++ have[last[x]], x /= last[x];
} inline void cut(int x){
while(last[x] != ) -- have[last[x]], x /= last[x];
} inline LL qpow(LL x, int have)
{
LL ans = ;
while(have)
{
if(have & ) ans = ans * x % p;
x = x * x % p, have >>= ;
}
return ans;
} void work()
{
int b = * n;
for(R i = ; i <= b; i ++) cal(i);
for(R i = ; i <= n; i ++) cut(i), cut(i);
cut(n + ), ans = ;
for(R i = ; i <= b; i ++)
if(have[i]) ans = ans * qpow(i, have[i]) % p;
printf("%lld\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
get();
pre();
work();
// fclose(stdin);
return ;
}

[HNOI2009]有趣的数列 卡特兰数的更多相关文章

  1. BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  2. [HNOI2009] 有趣的数列——卡特兰数与杨表

    [HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  3. bzoj 1485 [HNOI2009]有趣的数列 卡特兰数

    把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...

  4. 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数

    这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...

  5. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  6. luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解

    打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$. 对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可. code: #include < ...

  7. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  8. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  9. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2105  Solved: 1117[Submit][Stat ...

随机推荐

  1. iOS 中的正则表达式符号

    最近重新看了一遍 iOS 的正则文档,简单翻译下文档中涉及到的符号 1.正则表达式元字符 符号 说明 \a 响铃, \u0007 \A 匹配输入的开始,只匹配第一行,也就是忽略多行选项 \b 不在[] ...

  2. androd hook acitivity 启动流程,替换启动的activity(Android Instrumentation)

    前言:如果程序想要知道有activity启动,如果想要拦截activity,然后跳转到指定的activity怎么办? 我们看下ActivityThread 里面: private Activity p ...

  3. JAVA FILE.renameTo跨文件系统移动文件失败

    遇到了FILE.renameTo跨文件系统移动文件失败的问题,应使用FILES.move()接口或在同一文件系统移动文件. FILE.renameTo接口说明: public boolean rena ...

  4. Qt-QML-Slider-滑块-Style-后继

    首先了,先把我上篇文章的demo准备好,不过我上次写的被我删除了,这次就重新写了一个,上代码 import QtQuick 2.5 import QtQuick.Controls 1.4 import ...

  5. jmeter的脚本增强之参数化

    jmeter作为一款开源的测试工具,功能广泛,深受测试同胞们的喜爱,这次来讲讲关于如何参数化及其方式.那为什么要进行一个参数化呢,如做压测时,要有大量的数据来模拟用户的真实场景,像登录页面操作,系统是 ...

  6. 安迪的第一个字典 (Andy's First Dictionary,UVa10815)

    题目描述: #include<iostream> #include<string> #include<set> #include<sstream> us ...

  7. 【转】: 《江湖X》开发笔谈 - 热更新框架

    前言 大家好,我们这期继续借着我们工作室正在运营的在线游戏<江湖X>来谈一下热更新机制以及我们的理解和解决方案.这里先简单的介绍一下热更新的概念,熟悉这部分的朋友可以跳过,直接看我们的方案 ...

  8. jquery取radio单选按钮

    // var strMess = '<%=Exchange() %>';//            if (strMess == "兑换成功") {//         ...

  9. PK3Err0040

    PK3Err0040 The target device is not ready for debugging. Please check your configuration bit setting ...

  10. wpa_supplicant上行接口浅析

    摘自http://blog.csdn.net/fxfzz/article/details/6176414 wpa_supplicant提供的接口 从通信层次上划分, 上行接口:wpa_supplica ...