题面:[HNOI2009]有趣的数列

题解:

  观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b。

  2种想法(实质上是一样的)。

  1,相当于前1位中至少要选1个放入a,前3位中至少要选2位放入a,前5位中至少要选3位放入a......前2n - 1位中恰好选n位放入a。

  2,用0表示放入a集合,1表示放入b集合。则每个1都必须有一个左边的0与之匹配,相当于对于任意位置前面0的个数大于等于1的个数。

  不管是哪种,其实都可以看做括号匹配问题。。。。。。所以就是卡特兰数了

  因为n比较大,且p不一定为质数,因此可以用一个数组存下每个质因子有几个,对于乘法就累加,除法就减掉,然后把最后剩下的累乘起来就是答案。

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 2001000
#define maxn 2000000
#define LL long long int tot, n, p;
int pri[AC], last[AC];
LL have[AC], ans;
bool ispri[AC]; void get()
{
last[] = ;
for(R i = ; i <= maxn; i ++)
{
if(!ispri[i]) pri[++ tot] = i, last[i] = i;
for(R j = ; j <= tot; j ++)
{
int now = pri[j];
if(i * now > maxn) break;
ispri[i * now] = true, last[i * now] = now;
if(!(i % now)) break;
}
}
} void pre(){
scanf("%d%d", &n, &p);
} inline void cal(int x){//分解质因数
while(last[x] != ) ++ have[last[x]], x /= last[x];
} inline void cut(int x){
while(last[x] != ) -- have[last[x]], x /= last[x];
} inline LL qpow(LL x, int have)
{
LL ans = ;
while(have)
{
if(have & ) ans = ans * x % p;
x = x * x % p, have >>= ;
}
return ans;
} void work()
{
int b = * n;
for(R i = ; i <= b; i ++) cal(i);
for(R i = ; i <= n; i ++) cut(i), cut(i);
cut(n + ), ans = ;
for(R i = ; i <= b; i ++)
if(have[i]) ans = ans * qpow(i, have[i]) % p;
printf("%lld\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
get();
pre();
work();
// fclose(stdin);
return ;
}

[HNOI2009]有趣的数列 卡特兰数的更多相关文章

  1. BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  2. [HNOI2009] 有趣的数列——卡特兰数与杨表

    [HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  3. bzoj 1485 [HNOI2009]有趣的数列 卡特兰数

    把排好序的序列看成一对对括号,要把他们往原数列里塞,所以就是括号序合法方案数 即为卡特兰数 f(n)=Cn2nn+1 求的时候为避免除法,可以O(n)计算每个素数出现次数,最后乘起来,打完之后发现其实 ...

  4. 【BZOJ 1485】[HNOI2009]有趣的数列 卡特兰数

    这个题我是冲着卡特兰数来的所以就没有想到什么dp,当然也没有想到用卡特兰数的原因........... 你只要求出前几项就会发现是个卡特兰数,为什么呢:我们选择地时候要选择奇数位和偶数位,相邻(一对里 ...

  5. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  6. luogu 3200 [HNOI2009]有趣的数列 卡特兰数+质因数分解

    打个表发现我们要求的就是卡特兰数的第 n 项,即 $\frac{C_{2n}^{n}}{n+1}$. 对组合数的阶乘展开,然后暴力分解质因子并开桶统计一下即可. code: #include < ...

  7. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  8. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  9. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2105  Solved: 1117[Submit][Stat ...

随机推荐

  1. UItraIso 制作ubentu 系统失败

    设备忙,请退出所有正在运行的应用程序,按确定按钮重试. 解决方法: 不要使用UItraIso,不知道为什么一直不行.重启了电脑几次都不行.用Rufus吧 https://rufus.ie/ 注意: r ...

  2. spring源码-BeanFactoryPostProcessor-3.2

    一.BeanFactoryPostProcessor这个是spring容器的拓展之一,其目的是在容器初始化完成之前,通过beanFactory对上下文进行进行操作. 二.常用场景,需要对beanDef ...

  3. Python 获取windows管理员权限办法

    from __future__ import print_function import ctypes, sys, os def is_admin(): try: return ctypes.wind ...

  4. HTML5 离线应用程序

    离线Web应用:当客户端本地与Web应用程序的服务器没有建立连接时,也能正常在客户端本地使用该Web应用. Web应用程序的本地缓存与浏览器的网页缓存的区别 1. 本地缓存为整个Web应用程序服务,网 ...

  5. 探索 Flask

    探索 Flask 探索 Flask 是一本关于使用 Flask 开发 Web 应用程序的最佳实践和模式的书籍.这本书是由 426 名赞助人 在 Kickstarter 上 于 2013 年 7 月资助 ...

  6. 100万套PPT模板,包含全宇宙所有主题类型PPT,绕宇宙100圈,持续更新

    100万套PPT模板,包含全宇宙所有主题类型PPT(全部免费,都是精品,没有一张垃圾不好看的PPT,任何一张PPT拿来套入自己的信息就可以立马使用),绕宇宙100圈,任意一个模板在某文库上都价不菲.强 ...

  7. OSG-基本几何图形

    本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...

  8. jmeter关联三种常用方法

    在LR中有自动关联跟手动关联,但在我看来手动关联更准确,在jmeter中,就只有手动关联 为什么要进行关联:对系统进行操作时,本次操作或下一次操作对服务器提交的请求,这参数里边有部分参数需要服务器返回 ...

  9. 逆波兰表达式[栈 C 语言 实现]

    逆波兰表达式 逆波兰表达式又叫做后缀表达式.在通常的表达式中,二元运算符总是置于与之相关的两个运算对象之间,这种表示法也称为中缀表示.波兰逻辑学家J.Lukasiewicz于1929年提出了另一种表示 ...

  10. 【WXS全局对象】Date

    属性: 名称 说明 Date.parse( [dateString] ) 解析一个日期时间字符串,并返回 1970/1/1 午夜距离该日期时间的毫秒数. Date.UTC(year,month,day ...