【BZOJ5301】【CQOI2018】异或序列(莫队)

题面

BZOJ

洛谷

Description

已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子

序列满足异或和等于 k 。

也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]a[x+1]…^a[y]=k的x,y有多少组。

Input

输入文件第一行,为3个整数n,m,k。

第二行为空格分开的n个整数,即ai,a2,….an。

接下来m行,每行两个整数lj,rj,表示一次查询。

1≤n,m≤105,O≤k,ai≤105,1≤lj≤rj≤n

Output

输出文件共m行,对应每个查询的计算结果。

Sample Input

4 5 1

1 2 3 1

1 4

1 3

2 3

2 4

4 4

Sample Output

4

2

1

2

1

题解

板子题+原题

我也没有什么好说的了。

果然是模板大赛啊。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll ans[MAX],Ans;
int n,m,K,blk,num[MAX],a[MAX];
struct Query{int l,r,id,lb;}q[MAX];
bool operator<(Query a,Query b){if(a.lb!=b.lb)return a.lb<b.lb;return a.r<b.r;}
void Add(int x){Ans+=num[K^a[x]],++num[a[x]];}
void Del(int x){--num[a[x]],Ans-=num[K^a[x]];}
int main()
{
n=read();m=read();K=read();blk=sqrt(n);
for(int i=1;i<=n;++i)a[i]=read()^a[i-1];
for(int i=1;i<=m;++i)
{
int l=read(),r=read();
q[i]=(Query){l-1,r,i,l/blk};
}
sort(&q[1],&q[m+1]);
int L=0,R=-1;
for(int i=1;i<=m;++i)
{
while(R<q[i].r)Add(++R);
while(L>q[i].l)Add(--L);
while(L<q[i].l)Del(L++);
while(R>q[i].r)Del(R--);
ans[q[i].id]=Ans;
}
for(int i=1;i<=m;++i)printf("%lld\n",ans[i]);
return 0;
}

【BZOJ5301】【CQOI2018】异或序列(莫队)的更多相关文章

  1. BZOJ5301:[CQOI2018]异或序列(莫队)

    Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...

  2. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  3. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  4. 洛谷P4462 [CQOI2018]异或序列(莫队)

    题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...

  5. [CQOI2018]异或序列 (莫队,异或前缀和)

    题目链接 Solution 有点巧的莫队. 考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和. 然后如何考虑 ...

  6. P4462 [CQOI2018]异或序列 莫队

    题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...

  7. CQOI2018异或序列 [莫队]

    莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <c ...

  8. luogu P4462 [CQOI2018]异或序列 |莫队

    题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar​区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...

  9. BZOJ5301: [Cqoi2018]异或序列(莫队)

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 400  Solved: 291[Submit][Status ...

  10. [bzoj5301][Cqoi2018]异或序列_莫队

    异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...

随机推荐

  1. Altium designer18设置原理图尺寸

    1. AD18版本设置原理图尺寸和以前版本不一样,具体是在界面右侧Properties里面的Sheet Sizes.

  2. macOS 10.13 High Sierra PHP开发环境配置

    命令:sudo rm /usr/local/mysql sudo rm -rf /usr/local/mysql* sudo rm -rf /Library/StartupItems/MySQLCOM ...

  3. 使用vs code写php及调试

    原文来自:http://www.cnblogs.com/CLR010/p/5276077.html 首页先改下php.ini 一般是在最底部,有就修改没有就加上去下面的配置: xdebug.remot ...

  4. create-react-app创建react项目 css模块化处理

    用的css预处理器用sass,其他大同小异. 用create-react-app创建项目,执行npm run eject弹出配置文件(此操作不可逆): 配置sass,用的最新的CRA,webpack4 ...

  5. 惊喜Skr人,Istio的创始人Shriram Rajagopalan手把手教你如何使用Istio

    Shriram与来自Google.Lyft.IBM和其他公司的社区贡献者们一起并肩作战,积极地向Istio和Envoy项目作贡献.同时,Shriram是IBM的Amalgam8项目的创始成员之一.目前 ...

  6. 「日常训练」Jin Yong’s Wukong Ranking List(HihoCoder-1870)

    题意与分析 2018ICPC北京站A题. 题意是这样的,给定若干人的武力值大小(A B的意思是A比B厉害),问到第几行会出现矛盾. 这题不能出现思维定势,看到矛盾就是矛盾并查集--A>B.A&g ...

  7. Siki_Unity_2-1_API常用方法和类详细讲解(上)

    Unity 2-1 API常用方法和类详细讲解(上) 任务1&2:课程前言.学习方法 && 开发环境.查API文档 API: Application Programming I ...

  8. nodejs反向代理插件anyproxy安装

    目前我使用的是Anyproxy,AnyProxy .这个软件的特点是可以获取到https链接的内容.在2016年年初的时候微信公众号和微信文章开始使用https链接.并且Anyproxy可以通过修改r ...

  9. 常用算法Java实现之直接插入排序

    直接插入排序是将未排序的数据插入至已排好序序列的合适位置. 具体流程如下: 1.首先比较数组的前两个数据,并排序: 2.比较第三个元素与前两个排好序的数据,并将第三个元素放入适当的位置: 3.比较第四 ...

  10. 实现虚拟机VMware上Centos的linux与windows互相复制与粘贴

    转自:http://blog.csdn.net/u012243115/article/details/40454063 1.打开虚拟机的菜单“虚拟机”,下拉框中会有一个“安装 VMwareTools” ...