数据预处理包括数据的缺失值处理、标准化、规范化和离散化处理。

数据的缺失值处理:weka.filters.unsupervised.attribute.ReplaceMissingValues 对于数值属性,用平均值代替缺失值,对于nominal属性,用它的mode(出现最多的值)来代替缺失值。

标准化(standardize):类weka.filters.unsupervised.attribute.Standardize。标准化给定数据集中所有数值属性的值到一个0均值和单位方差的正态分布。

规范化(Nomalize):类weka.filters.unsupervised.attribute.Normalize。规范化给定数据集中的所有数值属性值,类属性除外。结果值默认在区间[0,1],但是利用缩放和平移参数,我们能将数值属性值规范到任何区间。如:但scale=2.0,translation=-1.0时,你能将属性值规范到区间[-1,+1]。

离散化(discretize):类weka.filters.supervised.attribute.Discretize和weka.filters.unsupervised.attribute.Discretize。分别进行监督和无监督的数值属性的离散化,用来离散数据集中的一些数值属性到分类属性。

转载自:http://blog.csdn.net/hunauchenym/article/details/5847314

WEKA中的数据预处理的更多相关文章

  1. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  2. 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介

    1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...

  3. 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介

    当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...

  4. 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值

    缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...

  5. 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化

    1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...

  6. matlab、sklearn 中的数据预处理

    数据预处理(normalize.scale) 0. 使用 PCA 降维 matlab: [coeff, score] = pca(A); reducedDimension = coeff(:,1:5) ...

  7. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

  8. 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤

    Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...

  9. 机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段

    处理连续性特征 二值化与分段 sklearn.preprocessing.Binarizer根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量.大于阈值的值映射为1,而小于或等于阈值的值 ...

随机推荐

  1. s5_day5作业

    # 1.写函数,用户传入修改的文件名,与要修改的内容,执行函数,完成批量修改操作 # def number_file(file,change_s,change): # import os # with ...

  2. python+selenium+API

    一.浏览器操作 1.浏览器最大化 driver.maximize_window() #将浏览器最大化显示 2.设置浏览器宽.高 driver.set_window_size(480, 800)#设置浏 ...

  3. POJ - 2226 Muddy Fields (最小顶点覆盖)

    *.*. .*** ***. ..*. 题意:有一个N*M的像素图,现在问最少能用几块1*k的木条覆盖所有的 * 点,k为>=1的任意值. 分析:和小行星那题很像.小行星那题是将一整行(列)看作 ...

  4. Spring 配置log4j和简单介绍Log4J的使用

    Log4j 是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口服务器.NT的事 件记录器.UNIX Syslog守护进程等 ...

  5. 使用Kali Linux 破解无线网

    用到的工具 airmon-ngairodump-ngaireplay-ngaircrack-ng 过程 123456789101112131415161718192021222324 root@lm: ...

  6. 蓝屏代码大全 & 蓝屏全攻略

    转载自http://diybbs.zol.com.cn/15/86_141447.html 一.蓝屏含义 1.故障检查信息 ***STOP 0x0000001E(0xC0000005,0xFDE38A ...

  7. web API help pages with Swagger / OpenAPI

    https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger?view=aspnetc ...

  8. 解决org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z

    这个问题来的有点莫名奇妙,之前我的hadoop运行一直是正常的,某一天开始运行Mapreduce就报这个错. 试过很多种方法都没有用,比如 1.path环境变量2.Hadoop bin目录下hadoo ...

  9. centos 使用rz sz指令

    在linux下安装rz很方便,使用 yum install lrzsz 就可以安装,正常使用rz和sz命令. 下面对sz和rz命令的一点介绍: 一般来说,linux服务器大多是通过ssh客户端来进行远 ...

  10. python之websocket

    一.websocket WebSocket协议是基于TCP的一种新的协议.WebSocket最初在HTML5规范中被引用为TCP连接,作为基于TCP的套接字API的占位符.它实现了浏览器与服务器全双工 ...