Recycling Bottles
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

It was recycling day in Kekoland. To celebrate it Adil and Bera went to Central Perk where they can take bottles from the ground and put them into a recycling bin.

We can think Central Perk as coordinate plane. There are n bottles on the ground, the i-th bottle is located at position (xi, yi). Both Adil and Bera can carry only one bottle at once each.

For both Adil and Bera the process looks as follows:

  1. Choose to stop or to continue to collect bottles.
  2. If the choice was to continue then choose some bottle and walk towards it.
  3. Pick this bottle and walk to the recycling bin.
  4. Go to step 1.

Adil and Bera may move independently. They are allowed to pick bottles simultaneously, all bottles may be picked by any of the two, it's allowed that one of them stays still while the other one continues to pick bottles.

They want to organize the process such that the total distance they walk (the sum of distance walked by Adil and distance walked by Bera) is minimum possible. Of course, at the end all bottles should lie in the recycling bin.

Input

First line of the input contains six integers axaybxbytx and ty (0 ≤ ax, ay, bx, by, tx, ty ≤ 109) — initial positions of Adil, Bera and recycling bin respectively.

The second line contains a single integer n (1 ≤ n ≤ 100 000) — the number of bottles on the ground.

Then follow n lines, each of them contains two integers xi and yi (0 ≤ xi, yi ≤ 109) — position of the i-th bottle.

It's guaranteed that positions of Adil, Bera, recycling bin and all bottles are distinct.

Output

Print one real number — the minimum possible total distance Adil and Bera need to walk in order to put all bottles into recycling bin. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct if .

Examples
input
3 1 1 2 0 0
3
1 1
2 1
2 3
output
11.084259940083
input
5 0 4 2 2 0
5
5 2
3 0
5 5
3 5
3 3
output
33.121375178000
Note

Consider the first sample.

Adil will use the following path: .

Bera will use the following path: .

Adil's path will be  units long, while Bera's path will be  units long.

题目大意: 给你ax,ay, bx,by, tx,ty。a、b两个人的坐标和垃圾桶的坐标。下面是n,然后n个瓶子的坐标xi,yi。两个人都只能拿到一个瓶子然后送回垃圾桶,然后再去捡其他瓶子。问你当所有瓶子都放入垃圾桶时,两个人一共走的最短距离是多少。

解题思路:假设a,b两人和垃圾桶在同一初始位置。那么所有瓶子放入垃圾桶时的距离为2*sigma(disti),dist表示垃圾桶到其他瓶子的距离,我们把这个值设为sum。现在考虑a如果开始捡第一瓶子i,那么所要走的距离为disa[i]-dist[i]+sum,考虑b如果开始捡第一个瓶子j,那么要走的距离为disb[i]-dist[i]+sum。现在我们维护两个数组a[i]表示a第一次捡i这个瓶子时要走的距离,b[i]表示b第一次要捡i瓶子时要走的距离。我们维护b最小的两个值,同时记录id。然后枚举a数组,同时,如果所维护的两个id中有一个是所枚举的a数组下标,那么b就取另一个,否则取最小的值更新结果。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
const int mod = 1e9+7;
const int maxn = 1e5+200;
const LL INF = 0x3f3f3f3f3f3f3f3f;
struct Coor{
double x, y;
}coors[maxn];
double Distan(Coor a, Coor b){
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
double disa[maxn], disb[maxn];
int main(){
int n;
Coor a, b, t;
while(scanf("%lf%lf %lf%lf %lf%lf",&a.x,&a.y,&b.x,&b.y,&t.x,&t.y)!=EOF){
scanf("%d",&n);
double dt;
double sum = 0;
double opt1 = double(INF), opt2 = double(INF);
int opt1id = 1, opt2id = 1;
for(int i = 1; i <= n; i++){
scanf("%lf%lf",&coors[i].x,&coors[i].y);
dt = Distan(coors[i], t);
sum += 2.0*dt;
disa[i] = Distan(coors[i], a) - dt;
disb[i] = Distan(coors[i], b) - dt;
if(disb[i] < opt1){
swap(opt1, opt2);
swap(opt1id,opt2id);
opt1 = disb[i];
opt1id = i;
}else if(disb[i] < opt2){
opt2 = disb[i];
opt2id = i;
}
}
double ans = double(INF);
for(int i = 1; i <= n; i++){
ans = min(ans, sum + disa[i]);
}
for(int i = 1; i <= n; i++){
ans = min(ans, sum + disb[i]);
}
if(n == 1){
printf("%.8lf",ans); continue;
}
for(int i = 1; i <= n; i++){
if(i == opt1id){
ans = min(ans, sum + disa[i]+disb[opt2id]);
}else{
ans = min(ans, sum + disa[i] + disb[opt1id]);
}
}
printf("%.7lf",ans);
}
return 0;
}

  

Codeforces 671 A——Recycling Bottles——————【思维题】的更多相关文章

  1. C. Nice Garland Codeforces Round #535 (Div. 3) 思维题

    C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  2. codeforces 672C C. Recycling Bottles(计算几何)

    题目链接: C. Recycling Bottles time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  3. Codeforces 515C 题解(贪心+数论)(思维题)

    题面 传送门:http://codeforces.com/problemset/problem/515/C Drazil is playing a math game with Varda. Let’ ...

  4. 【18.69%】【codeforces 672C】Recycling Bottles

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  5. Codeforces 1188B - Count Pairs(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 虽说是一个 D1B,但还是想了我足足 20min,所以还是写篇题解罢( 首先注意到这个式子里涉及两个参数,如果我们选择固定一个并动态维护另 ...

  6. Codeforces 1365G - Secure Password(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 首先考虑一个询问 \(20\) 次的方案,考虑每一位,一遍询问求出下标的这一位上为 \(0\) 的位置上值的 bitwise or,再一遍 ...

  7. Codeforces 1129E - Legendary Tree(思维题)

    Codeforces 题面传送门 & 洛谷题面传送门 考虑以 \(1\) 为根,记 \(siz_i\) 为 \(i\) 子树的大小,那么可以通过询问 \(S=\{2,3,\cdots,n\}, ...

  8. CodeForces - 427A (警察和罪犯 思维题)

    Police Recruits Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Sub ...

  9. codeforces 848B Rooter's Song 思维题

    http://codeforces.com/problemset/problem/848/B 给定一个二维坐标系,点从横轴或纵轴垂直于发射的坐标轴射入(0,0)-(w,h)的矩形空间.给出点发射的坐标 ...

随机推荐

  1. MVC下EF添加上下文

    这里我们用Code First方法创建数据库表.这个方法简单点说就是先创建Model再根据Model生成数据库表. 为了方便起见,这里用的数据库是Visual Studio自带的LocalDb. 数据 ...

  2. WPF 实现INotifyPropertyChanged .Net Framework 4.5

    自己动手写了一个基类来实现INotifyPropertyChanged接口,以后可以直接使用. using System.ComponentModel; using System.Runtime.Co ...

  3. iis 部署webapi常见错误及解决方案

    iis 部署webapi常见错误及解决方案 错误一: 原因:asp.net web api部署在Windows服务器上后,按照WebAPI定义的路由访问,老是出现404,但定义一个静态文件从站点访问, ...

  4. 冒泡排序算法 :BubbleSort

    java中的经典算法:冒泡排序算法 $. 可以理解成当你静止一杯可乐时,里面的CO2随着你的静止,由于不不易溶于水的性质, 且会以气泡的形式逐渐向上漂浮.越大的气泡上浮速度越快. 冒泡排序算法的原理于 ...

  5. python之爬虫(三) Urllib库的基本使用

    官方文档地址:https://docs.python.org/3/library/urllib.html 什么是Urllib Urllib是python内置的HTTP请求库包括以下模块urllib.r ...

  6. 51nod-迷宫问题(Dijkstra算法)

    关于Dijkstra算法的博文 http://www.cnblogs.com/skywang12345/p/3711512.html#anchor2 Dijkstra算法是一个经典的算法——他是荷兰计 ...

  7. “全栈2019”Java第三十八章:类与方法

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  8. es查询,聚合、平均值、值范围、cardinality去重查询

    原文:https://blog.csdn.net/sxf_123456/article/details/78195829 普通查询 GET ana-apk/_search { "query& ...

  9. 851 AlvinZH的鬼畜密码(背包DP大作战N)

    851 AlvinZH的鬼畜密码 思路 难题.动态规划. 先判断字符串是否合理(可翻译),然后分段处理,每一小段用动态规划求出解法数. dp[i]:字符串str[0~i]的解法数.通过判断str[i] ...

  10. wifi测距

    #include "ESP8266WiFi.h" #include "math.h" //d = 10^(A-(abs(rssi)) / (10 * n)) 信 ...