bzoj 3512: DZY Loves Math IV
Description
给定n,m,求
模10^9+7的值。
Solution
设 \(S(n,m)\) 表示 \(\sum_{i=1}^{m}\phi(n*i)\)
\(Ans=\sum_{i=1}^{n}S(i,m)\)
\(S(n,m)=\sum_{i=1}^{m}\phi(n*i)\)
如果 \(\mu(n)!=0\)
则有 \(\sum_{i=1}^{m}\phi(\frac{n}{gcd(i,n)})*\phi(i)*gcd(i,n)\) (因为要保证除完\(gcd\)之后,两数不含相同的质因子,所以 \(\mu(n)!=0\))
\(\sum_{i=1}^{m}\phi(\frac{n}{gcd(i,n)})*\phi(i)*\sum_{d|i,d|n}\phi(d)\)
因为第一项和第三项是互质的 , 所以可以合并.
\(\sum_{i=1}^{m}\phi(i)*\sum_{d|n,d|i}\phi(\frac{n}{d})\)
\(\sum_{d=1}^{n}\phi(\frac{n}{d})*\sum_{i=1}^{\frac{m}{d}}\phi(d*i)\)
\(\sum_{d=1}^{n}\phi(\frac{n}{d})*S(d,\lfloor\frac{m}{d}\rfloor)\)
递归处理即可
如果 \(\mu(n)=0\)
我们直接提出 \(n\) 的多出的质因子之积 \(a\),使得 \(\mu(\frac{n}{a})!=0\)
那么 \(S(n,m)=\sum_{i=1}^{m}\phi(n*i)\) 中也可以提出 \(a\) 了,因为相同的质因子只会被算一次
根据定义式 \(\phi(n)=n*\Pi p_i\),所以 \(a\) 唯一的贡献就是使前面的 \(n\) 乘了个 \(a\)
\(a*S(n,m)=\sum_{i=1}^{m}\phi(\frac{n}{a}*i)=a*S(\frac{n}{a},m)\)
递归处理即可
边界条件 \(m=1\) 时,结果为 \(\phi(n)\), \(n=1\) 时,跑一个杜教筛就行了
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10,mod=1e9+7;
int n,prime[N],num=0,m,phi[N],mu[N],pre[N],la[N],s[N];bool vis[N];
void priwork(){
phi[1]=s[1]=1;
for(int to,i=2;i<N;i++){
if(!vis[i])prime[++num]=i,phi[i]=i-1,mu[i]=-1,pre[i]=i;
for(int j=1;j<=num && i*prime[j]<N;j++){
vis[to=i*prime[j]]=1;pre[to]=prime[j];
if(i%prime[j])phi[to]=phi[i]*(prime[j]-1),mu[to]=-mu[i];
else {phi[to]=phi[i]*prime[j];break;}
}
s[i]=(s[i-1]+phi[i])%mod;
}
for(int i=2;i<=n;i++){
if(mu[i])continue;
int last=0,x=i;la[i]=1;
while(x>1){
if(pre[x]==last)la[i]*=pre[x];
last=pre[x];x/=pre[x];
}
}
}
map<int,int>S[N],T;
inline int calc(int n){
if(n<N)return s[n];
if(T.find(n)!=T.end())return T[n];
int ret=(1ll*n*(n+1)>>1)%mod;
for(int i=2,r;i<=n;i=r+1){
r=n/(n/i);
ret=(ret-1ll*calc(n/i)*(r-i+1))%mod;
}
if(ret<0)ret+=mod;
return T[n]=ret;
}
inline int solve(int n,int m){
if(m==1)return phi[n];
if(n==1)return calc(m);
if(S[n].find(m)!=S[n].end())return S[n][m];
if(!mu[n])return 1ll*la[n]*solve(n/la[n],m)%mod;
int ret=0,lim=min(m,(int)sqrt(n));
for(int i=1;i<=lim;i++){
if(n%i==0){
if(i*i!=n)ret=(ret+1ll*phi[n/i]*solve(i,m/i)+1ll*phi[i]*solve(n/i,m/(n/i)))%mod;
else ret=(ret+1ll*phi[n/i]*solve(i,m/i))%mod;
}
}
return S[n][m]=ret;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>m;
priwork();
int ans=0;
for(int i=1;i<=n;i++)ans=(ans+solve(i,m))%mod;
printf("%d\n",ans);
return 0;
}
bzoj 3512: DZY Loves Math IV的更多相关文章
- BZOJ 3512: DZY Loves Math IV [杜教筛]
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...
- ●BZOJ 3512 DZY Loves Math IV
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3512 题解: $$求ANS=\sum_{i=1}^{N}\sum_{j=1}^{M}\phi ...
- 【刷题】BZOJ 3512 DZY Loves Math IV
Description 给定n,m,求 模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅一行答案. Sample Input 100000 1000000000 Sampl ...
- bzoj 3512: DZY Loves Math IV【欧拉函数+莫比乌斯函数+杜教筛】
参考:http://blog.csdn.net/wzf_2000/article/details/54630931 有这样一个显然的结论:当\( |\mu(n)|==1 \)时,\( \phi(nk) ...
- 【BZOJ3512】DZY Loves Math IV(杜教筛)
[BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1303 Solved: 819[Submit][Status][Dis ...
随机推荐
- SOLR企业搜索平台 一 (搭建SOLR)
前提是已经安装了java的环境,环境变量的配置不做为讲解,网上也有大量资料.下面以linux为例来说明如何搭建好一个solr 1)首先下载solr,下载地址:http://mirror.bit.edu ...
- WPF判断当前窗体是否为模态
WPF判断当前窗体是否为模态 1.使用System.Windows.Interop.ComponentDispatcher.IsThreadModal来判断 参照:https://social.m ...
- C++&VS项目学习
vs使用 C++项目中,Solution Explorer主要是逻辑视图(不对应文件的逻辑位置,没有文件夹只有Filter的概念.头文件源文件被自动分配到Header Files和Source Fil ...
- linux 磁盘保留空间设置
1.查看保留空间大小 tune2fs -l /dev/sda8 reserved blocks 2.调整保留空间大小(系统默认5%) tune2fs -m 0.5 /dev/sda8 参考链接:ht ...
- ARX项目中添加开源数据库SQLite3 的加密开源库wxsqlite3
RX添加wxsqlite3加密数据库, 下载 https://sourceforge.net/projects/wxcode/files/Components/wxSQLite3/ 复制这11个文件到 ...
- 浅谈iOS开发中多语言的字符串排序
一.前言 在iOS开发中,一个经常的场景是利用tableview展示一组数据,以很多首歌曲为例子.为了便于查找,一般会把这些歌曲按照一定的顺序排列,还会加上索引条以便于快速定位. 由于歌曲名可能有数字 ...
- 博弈论教程(A Course in Game Theory)摘录
P4 在我们所研究的模型中,决策主体往往要在不确定条件下进行决策.参与人可能: 不能确定环境的客观因素: 对博弈中发生的事件不很清楚: 不能确定别的不确定参与人的行动: 不能确定别的参与人的推理. 为 ...
- Ubuntu如何配置网桥 Ubuntu系统配置网桥详细教程
注意:如果是在ubuntu桌面版本上使用,图形化控制与ifupdown配置不兼容.如果使用ifupdown来配置,需要禁止使用图形化控制. 本文经过本人结合网络内容亲身实践,配置通了ifupdown ...
- 洛谷 P4234 最小差值生成树(LCT)
题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...
- HashSet存储过程中如何排除不同的自定义对象?
HashSet HashSet存储过程中如何排除不同的自定义对象? 先看一个小demo public class Demo1 { public static void main(String[] ar ...