顾名思意,就是直接从待排序数组里选择一个最小(或最大)的数字,每次都拿一个最小数字出来,

顺序放入新数组,直到全部拿完

再简单点,对着一群数组说,你们谁最小出列,站到最后边

然后继续对剩余的无序数组说,你们谁最小出列,站到最后边

再继续刚才的操作,一直到最后一个,继续站到最后边,现在数组有序了,从小到大

举例

先说看每步的状态变化,后边介绍细节,现有无序数组[6 2 4 1 5 9]

第一趟找到最小数1,放到最前边(与首位数字交换)

交换前:| 6 | 2 | 4 | 1 | 5 | 9 |

交换后:| 1 | 2 | 4 | 6 | 5 | 9 |

第二趟找到余下数字[2 4 6 5 9]里的最小数2,与当前数组的首位数字进行交换,实际没有交换,本来就在首位

交换前:| 1 | 2 | 4 | 6 | 5 | 9 |

交换后:| 1 | 2 | 4 | 6 | 5 | 9 |

第三趟继续找到剩余[4 6 5 9]数字里的最小数4,实际没有交换,4待首位置无须交换

第四趟从剩余的[6 5 9]里找到最小数5,与首位数字6交换位置

交换前:| 1 | 2 | 4 | 6 | 5 | 9 |

交换后:| 1 | 2 | 4 | 5 | 6 | 9 |

第五趟从剩余的[6 9]里找到最小数6,发现它待在正确的位置,没有交换

排序完毕输出正确结果[1 2 4 5 6 9]

第一趟找到最小数1的细节

当前数组是| 6 | 2 | 4 | 1 | 5 | 9 |

先把6取出来,让它扮演最小数

当前最小数6与其它数一一进行比较,发现更小数就交换角色

当前最小数6与2比较,发现更小数,交换角色,此时最小数是2,接下来2与剩余数字比较

当前最小数2与4比较,不动

当前最小数2与1比较,发现更小数,交换角色,此时最小数是1,接下来1与剩余数字比较

当前最小数1与5比较,不动

当前最小数1与9比较,不动,到达末尾

当前最小数1与当前首位数字进行位置交换,如下所示

交换前:| 6 | 2 | 4 | 1 | 5 | 9 |

交换后:| 1 | 2 | 4 | 6 | 5 | 9 |

完成一趟排序,其余步骤类似

static void selection_sort(int[] unsorted)
{
for (int i = 0; i < unsorted.Length; i++)
{
int min = unsorted[i], min_index = i;
for (int j = i; j < unsorted.Length; j++)
{
if (unsorted[j] < min)
{
min = unsorted[j];
min_index = j;
}
}
if (min_index != i)
{
int temp = unsorted[i];
unsorted[i] = unsorted[min_index];
unsorted[min_index] = temp;
}
}
} static void Main(string[] args)
{
int[] x = { 6, 2, 4, 1, 5, 9 };
selection_sort(x);
foreach (var item in x)
{
Console.WriteLine(item);
}
Console.ReadLine();
}

  

选择排序Selection sort的更多相关文章

  1. 排序算法 - 选择排序(selection sort)

    选择排序(Selection sort)跟插入排序一样,也是O(n^2)的复杂度,这个排序方式也可以用我们的扑克牌来解释. 概念 桌面上有一堆牌,也是杂乱无章的,现在我们想将牌由小到大排序,如果使用选 ...

  2. 简单选择排序 Selection Sort 和树形选择排序 Tree Selection Sort

    选择排序 Selection Sort 选择排序的基本思想是:每一趟在剩余未排序的若干记录中选取关键字最小的(也可以是最大的,本文中均考虑排升序)记录作为有序序列中下一个记录. 如第i趟选择排序就是在 ...

  3. 排序算法--选择排序(Selection Sort)_C#程序实现

    排序算法--选择排序(Selection Sort)_C#程序实现 排序(Sort)是计算机程序设计中的一种重要操作,也是日常生活中经常遇到的问题.例如,字典中的单词是以字母的顺序排列,否则,使用起来 ...

  4. 选择排序 Selection Sort

    选择排序 Selection Sort 1)在数组中找最小的数与第一个位置上的数交换: 2)找第二小的数与第二个位置上的数交换: 3)以此类推 template<typename T> / ...

  5. 跳跃空间(链表)排序 选择排序(selection sort),插入排序(insertion sort)

    跳跃空间(链表)排序 选择排序(selection sort),插入排序(insertion sort) 选择排序(selection sort) 算法原理:有一筐苹果,先挑出最大的一个放在最后,然后 ...

  6. [算法] 选择排序 Selection sort

    选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然 ...

  7. 【排序算法】选择排序(Selection sort)

    0. 说明 选择排序(Selection sort)是一种简单直观的排序算法. 它的工作原理如下. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最 ...

  8. 排序--选择排序Selection Sort Java实现

    基本原理 选择排序的简单原理:选择排序算法通过从未排序部分重复查找最小元素(考虑升序)并将其放在开头来对数组进行排序. 将数组两个子数组: 已排序子数组 未排序子数组 选择排序中每次循环都会从未排序子 ...

  9. 选择排序——Selection Sort

    基本思想: 在长度为N的无序数组中,第一次遍历n-1个数,找到最小的数值与第一个元素交换:第二次遍历n-2个数,找到最小的数值与第二个元素交换:...第n-1次遍历,找到最小的数值与第n-1个元素交换 ...

随机推荐

  1. PSP1123

    PSP时间图: 类型 任务 开始时间 结束时间 净时间 中断时间 日期 开会 开会 16:17 16:50 33 0 20171027 开会 开会 17:00 17:22 22 0 20171028 ...

  2. NIO初探

    NIO的前世今生 NIO又叫NonBlockingI/O,即非阻塞I/O.以此对应的,有一个更常见的IO(BIO),又叫Blocking I/O,即阻塞IO,两种都为Java的IO实现方案. NIO/ ...

  3. android 出现Make sure the Cursor is initialized correctly before accessing data from it

    Make sure the Cursor is initialized correctly before accessing data from it 详细错误是:java.lang.IllegalS ...

  4. <Effective C++>读书摘要--Implementations<一>

    1.For the most part, coming up with appropriate definitions for your classes (and class templates) a ...

  5. 【OSG】 报错:丢失osg100-osgDB.dll

    如果你bin目录已经添加到了环境变量的path里面,还报这个错的话. 或许你重启一下电脑就可以了..我就这么解决的.

  6. c# 中base64字符串和图片的相互转换

    c#base64字符串转图片用到了bitmap类,封装 GDI+ 位图,此位图由图形图像及其特性的像素数据组成. Bitmap 是用于处理由像素数据定义的图像的对象. 具体bitmap类是什么可以自己 ...

  7. 求csdn博客优良编辑方法

    看见很多大牛的csdn博客编写的非常好,阅读体验也非常强.我就纳闷了,为啥我插公式也不行,插图片也不行呢... 插图片问题:图片不能复制招贴,否则在编辑的时候可以显示但是在发表之后就无法显示了.想要显 ...

  8. Java 多线程 三种实现方式

    Java多线程实现方式主要有三种:继承Thread类.实现Runnable接口.使用ExecutorService.Callable.Future实现有返回结果的多线程.其中前两种方式线程执行完后都没 ...

  9. 创建 cordova 项目

    1. 安装 node.js 2.安装 cordova : npm install -g cordova 3.创建 安卓项目: cordova create <项目路径>  <包名&g ...

  10. apiDoc 入门

    网站 http://apidocjs.com/#demo Install npm install apidoc -g Run apidoc -i myapp/ -o apidoc/ -t mytemp ...