HDU 1569 方格取数(2)(最大流最小割の最大权独立集)
Description
Input
Output
题目大意:这么短还中文就没大意了,唯一要注意的就是输入的第一个是行第二个是列……
思路:这题为最大权独立集(所选的点之间都没有边)。建立一个最大流的二分图,i+j为偶数的放左边,源点S连一条边到它,容量为格子里的数,其余放右边,连一条边到汇点T,容量还是格子里的数,相邻的都从左到右连一条边,容量为无穷大。所有数字之和减去最大流即为答案。
小证明:这样构图求出的最大流为最小权覆盖集(所有边至少被一个点覆盖),详见POJ 3308 Paratroopers(最大流最小割の最小点权覆盖)
而最小权覆盖集与最大权独立集是对偶图,把最小权覆盖集里的点都取反,就可以得到一个最大权独立集,所以总权 = 最小权覆盖集 + 最大权独立集。详见二分图中的对偶问题
代码(15MS):
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = ;
const int INF = 0x3fff3fff; struct SAP {
int head[MAXN], dis[MAXN], pre[MAXN], cur[MAXN], gap[MAXN];
int to[MAXE], next[MAXE], flow[MAXE];
int n, st, ed, ecnt; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; flow[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; flow[ecnt] = ; next[ecnt] = head[v]; head[v] = ecnt++;
//printf("%d->%d flow = %d\n", u, v, c);
} void bfs() {
memset(dis, 0x3f, sizeof(dis));
queue<int> que; que.push(ed);
dis[ed] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
++gap[dis[u]];
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p ^ ] && dis[v] > n) {
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int Max_flow(int ss, int tt, int nn) {
st = ss; ed = tt; n = nn;
int ans = , minFlow = INF, u;
for(int i = ; i <= n; ++i) {
cur[i] = head[i];
gap[i] = ;
}
u = pre[st] = st;
bfs();
while(dis[st] < n) {
bool flag = false;
for(int &p = cur[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && dis[u] == dis[v] + ) {
flag = true;
minFlow = min(minFlow, flow[p]);
pre[v] = u;
u = v;
if(u == ed) {
ans += minFlow;
while(u != st) {
u = pre[u];
flow[cur[u]] -= minFlow;
flow[cur[u] ^ ] += minFlow;
}
minFlow = INF;
}
break;
}
}
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(flow[p] && minDis > dis[v]) {
minDis = dis[v];
cur[u] = p;
}
}
if(--gap[dis[u]] == ) break;
gap[dis[u] = minDis + ]++;
u = pre[u];
}
return ans;
}
} G; int n, m;
int mat[][]; int main() {
while(scanf("%d%d", &n, &m) != EOF) {
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) scanf("%d", &mat[i][j]);
G.init();
int ss = n * m + , tt = n * m + ;
int cnt = , sum = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
++cnt; sum += mat[i][j];
if((i + j) & ) {
G.add_edge(ss, cnt, mat[i][j]);
if(j != ) G.add_edge(cnt, cnt - , INF);
if(i != ) G.add_edge(cnt, cnt - m, INF);
if(j != m) G.add_edge(cnt, cnt + , INF);
if(i != n) G.add_edge(cnt, cnt + m, INF);
}
else G.add_edge(cnt, tt, mat[i][j]);
}
}
printf("%d\n", sum - G.Max_flow(ss, tt, tt));
}
}
HDU 1569 方格取数(2)(最大流最小割の最大权独立集)的更多相关文章
- HDU 1569 方格取数(2) (最小割)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Su ...
- 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)
HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...
- HDU 1569 方格取数(2)
方格取数(2) Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 15 ...
- HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...
- HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]
题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...
- HDU 1565 1569 方格取数(最大点权独立集)
HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...
- [HDU 1565+1569] 方格取数
HDU 1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- HDU 1565 方格取数(1) 轮廓线dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...
随机推荐
- React最佳实践(1)
React最佳实践不敢妄谈,但最差实践非知乎莫属. 旧版知乎看起来土了点,但体验流畅,起码用起来舒服. 新版知乎看起来UI现代化,技术实现上采用了React,但是可能因为知乎缺钱,请不起高水平的前端工 ...
- detach()之大坑:detach会引起局部变量失效引起线程对内存的非法访问题。
detach()之大坑:detach会引起局部变量失效引起线程对内存的非法访问题.一:传递临时对象作为线程参数(1.1)要避免的陷阱(解释一)(1.2)要避免的陷阱(解释一)事实一:只要用临时构造的A ...
- 创建在类路径资源[applicationcontext]中定义名为“工厂”的bean时出错。:在设置bean属性“dataSource”时,无法解析对bean“dataSource”的引用;嵌套异常是org.springframe .beans.factory。BeanCreationException:创建名为“数据源”的bean时出错,该名称是在类路径资源[applicationcontext
控制台报错: 创建在类路径资源[applicationcontext]中定义名为“工厂”的bean时出错.:在设置bean属性“dataSource”时,无法解析对bean“dataSource”的引 ...
- md5加密+盐方式二
这类md5+盐加密是属于自定义盐值的简单方法! 1.导入架包 2.调用方法 DigestUtils.md5Hex(password);//加密方法 举例 方式一: password=DigestUti ...
- HTML a的连接
QQ电脑端 <a target="_blank" href="http://wpa.qq.com/msgrd?v=3&uin=XXXXXX&site ...
- collections.ChainMap类合并字典或映射
## 使用update()方法或者ChainMap类合并字典或映射 # 使用update()方法合并 a = {'x': 1, 'z': 3} b = {'y': 2, 'z': 4} merged ...
- java synchronized 关键字原理
Synchronized 关键字是解决并发问题常用解决方案,有以下三种使用方式: 同步普通方法,锁的是当前对象.同步静态方法,锁的是当前 Class 对象.同步块,锁的是 {} 中的对象. 实现原理: ...
- Struts2+Datagrid表格显示(可显示多表内容)
概述 最近学到EasyUI的Datagrid数据网格,然后就做了一个小例子,中间层利用Struts2来完成,DAO层用的是Hibernate. 数据库 数据库涉及到stuednt(name,noid, ...
- Hadoop-Hive学习笔记(1)
1. Hive什么 a.Hive是基于Hadoop的一个数据仓库工具(注意不是数据仓库),将结构化的数据文件映射成一张数据库表. b.Hive是SQL的解析引擎,可以把sql语句转换成MapReduc ...
- STM32F407+STemwin学习笔记之STemwin移植补充Touch
原文地址:http://www.cnblogs.com/NickQ/p/8857213.html 环境:keil5.20 STM32F407ZGT6 LCD(320*240) STemwin:S ...