题目描述:

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

二维做法:

#include<iostream>
#include<algorithm>
using namespace std;
int n, m;
int v[1010], w[1010], f[1010][1010];
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
cin >> v[i] >> w[i];
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)//j要从0开始,
{
f[i][j] = f[i - 1][j];//物品重量大于背包重量,没法取
if (j >= v[i])
{
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);// max(不取,取)
}
}
cout << f[n][m] << "\n";// f[n][m]即为最大值
return 0;
}

  

一维做法:

#include<iostream>
#include<algorithm>
using namespace std;
int n, m;
int v[1010], w[1010], f[1010];// f[j]:容量为j所能取得的最大值
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)cin >> v[i] >> w[i];
for (int i = 1; i <= n; i++)
for (int j = m; j >= v[i]; j--)
{
f[j] = max(f[j], f[j - v[i]] + w[i]);// max(不取,取)
}
cout << f[m] << "\n";//f[m]即最大值
return 0;
}

01背包问题:DP的更多相关文章

  1. 普通01背包问题(dp)

    有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 <= wi,vi & ...

  2. 0-1背包问题-DP

    中文理解: 0-1背包问题:有一个贼在偷窃一家商店时,发现有n件物品,第i件物品价值vi元,重wi磅,此处vi与wi都是整数.他希望带走的东西越值钱越好,但他的背包中至多只能装下W磅的东西,W为一整数 ...

  3. 01背包问题之2(dp)

    01背包问题之2 有n个物品,重量和价值分别为wi和vi,从这些物品中挑选出重量不超过W的物品,求所有挑选方案中物品价值总和的最大值 限制条件: 1 <= n <= 100; 1 < ...

  4. 01背包问题的延伸即变形 (dp)

    对于普通的01背包问题,如果修改限制条件的大小,让数据范围比较大的话,比如相比较重量而言,价值的范围比较小,我们可以试着修改dp的对象,之前的dp针对不同的重量限制计算最大的价值.这次用dp针对不同的 ...

  5. 动态规划(DP),0-1背包问题

    题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+ ...

  6. PAT 甲级 1068 Find More Coins (30 分) (dp,01背包问题记录最佳选择方案)***

    1068 Find More Coins (30 分)   Eva loves to collect coins from all over the universe, including some ...

  7. DP动态规划之01背包问题

    目录 问题描述 问题分析 问题求解 Java代码实现 优化方向一:时间方面:因为是j是整数是跳跃式的,可以选择性的填表. 思考二:处理j(背包容量),w(重量)不为整数的时候,因为j不为整数了,它就没 ...

  8. DP:0-1背包问题

    [问题描述] 0-1背包问题:有 N 个物品,物品 i 的重量为整数 wi >=0,价值为整数 vi >=0,背包所能承受的最大重量为整数 C.如果限定每种物品只能选择0个或1个,求可装的 ...

  9. 01背包问题:POJ3624

    背包问题是动态规划中的经典问题,而01背包问题是最基本的背包问题,也是最需要深刻理解的,否则何谈复杂的背包问题. POJ3624是一道纯粹的01背包问题,在此,加入新的要求:输出放入物品的方案. 我们 ...

  10. 01背包问题:Charm Bracelet (POJ 3624)(外加一个常数的优化)

    Charm Bracelet    POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include& ...

随机推荐

  1. JavaScript document对象

    1.document对象是window对象的子对象,可直接使用,多用于获取HTML页面元素 2.document对象属性 a) alinkColor活动链接颜色 b) linkColor文本链接颜色 ...

  2. linux配置mysq与navicat关联

    第一步:在linux中安装mysql(执行如下语句) 安装 mysql: yum install mysql yum install mysql-server yum install mysql-de ...

  3. 04JavaScript语法

    1.JavaScript 语法 JavaScript 是一个脚本语言. 它是一个轻量级,但功能强大的编程语言 2.JavaScript 字面量 在编程语言中,一般固定值称为字面量,如 3.14. 数字 ...

  4. js函数和window对象

  5. layer 刷新某个页面

    一:使用layer.open打开的子页面 window.parent.location.reload()//刷新父页面 var index = parent.layer.getFrameIndex(w ...

  6. Spring Security学习笔记(一)

    认证和权限控制 AuthenticationManager是认证的主要接口,它只有一个authenticate方法,可以做3件事情. 返回一个认证信息(Authentication),表示认证成功 抛 ...

  7. python反射怎么用

    反射: 通过字符串的形式对 对象 进行增删改查 setattr 设置某个属性的值 class A(object): def __init__(self): self.name = "sath ...

  8. windows下nginx的安装

    一. 下载 http://nginx.org/    (下载后解压) 二. 修改配置文件 nginx配置文件在 nginx-1.8.0\conf\nginx.conf http { gzip on; ...

  9. 详解 Python3 正则表达式(二)

    上一篇:详解 Python3 正则表达式(一) 本文翻译自:https://docs.python.org/3.4/howto/regex.html 博主对此做了一些批注和修改 ^_^ 使用正则表达式 ...

  10. win10 下安装 MongoDB 数据库支持模块(python)

    C:\>pythonPython 3.5.2 (v3.5.2:4def2a2901a5, Jun 25 2016, 22:18:55) [MSC v.1900 64 bit (AMD64)] o ...