题意

给定$n​$个矩形$(x_1,y_1,x_2,y_2)​$,求这$n​$个矩形的面积并

题解

扫描线裸题,可以不用线段树维护,$O(n^2)$是允许的。

#include <cstdio>
#include <cstring>
#include <algorithm>
using std::sort;
using std::unique;
using std::lower_bound; const int N = 1e2 + 10;
int n, m, tot;
double ans, x1[N], y1[N], x2[N], y2[N], raw[N << 1], tmp[N << 1];
struct Node {
double x, dy, uy, g;
inline bool operator < (const Node &a) const { return x < a.x; }
} cy[N << 1]; int cnt;
double val[N << 3]; int fg[N << 3]; inline void update(int o, int l, int r) {
if(fg[o]) val[o] = raw[r + 1] - raw[l];
else if(l == r) val[o] = 0;
else val[o] = val[o << 1] + val[o << 1 | 1];
}
void modify (int ml, int mr, int k, int o = 1, int l = 1, int r = m) {
if(l >= ml && r <= mr) {
fg[o] += k, update(o, l, r);
return ;
}
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
if(ml <= mid) modify(ml, mr, k, lc, l, mid);
if(mr > mid) modify(ml, mr, k, rc, mid + 1, r);
update(o, l, r);
} int main () {
while(scanf("%d", &n) != EOF) {
if(!n) break; ++tot; ans = m = cnt = 0;
memset(val, 0, sizeof val), memset(fg, 0, sizeof fg);
for(int i = 1; i <= n; ++i) {
scanf("%lf%lf%lf%lf", x1 + i, y1 + i, x2 + i, y2 + i);
tmp[++m] = y1[i], tmp[++m] = y2[i];
}
sort(&tmp[1], &tmp[m + 1]); m = unique(&tmp[1], &tmp[m + 1]) - tmp - 1;
for(int i = 1; i <= n; ++i) {
int ind1 = lower_bound(&tmp[1], &tmp[m + 1], y1[i]) - tmp;
int ind2 = lower_bound(&tmp[1], &tmp[m + 1], y2[i]) - tmp;
raw[ind1] = y1[i], raw[ind2] = y2[i], y1[i] = ind1, y2[i] = ind2;
}
for(int i = 1; i <= n; ++i) {
cy[++cnt] = (Node){x1[i], y1[i], y2[i], 1};
cy[++cnt] = (Node){x2[i], y1[i], y2[i], -1};
} sort(&cy[1], &cy[cnt + 1]);
for(int i = 1; i <= cnt; ++i) {
modify(cy[i].dy, cy[i].uy - 1, cy[i].g);
ans += val[1] * (cy[i + 1].x - cy[i].x);
}
printf("Test case #%d\nTotal explored area: %.2lf\n\n", tot, ans);
}
return 0;
}

Poj1151&HDU1542 Atlantis(扫描线+线段树)的更多相关文章

  1. [POJ1151][HDU1542]Atlantis(线段树,扫描线)

    英文题面,我就只放个传送门了. Solution  题意是算矩形面积并,这是扫描线算法能解决的经典问题. 算法的大致思想是,把每一个矩形拆成上边和下边(以下称作扫描线),每条扫描线有四个参数l,r,h ...

  2. [HDU1542]Atlantis(扫描线+线段树)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  3. 【POJ1151】Atlantis(线段树,扫描线)

    [POJ1151]Atlantis(线段树,扫描线) 题面 Vjudge 题解 学一学扫描线 其实很简单啦 这道题目要求的就是若干矩形的面积和 把扫描线平行于某个轴扫过去(我选的平行\(y\)轴扫) ...

  4. hdu1542 Atlantis (线段树+扫描线+离散化)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  5. poj1151 Atlantis——扫描线+线段树

    题目:http://poj.org/problem?id=1151 经典的扫描线问题: 可以用线段树的每个点代表横向被矩形上下边分割开的每一格,这样将一个矩形的出现或消失化为线段树上的单点修改: 每个 ...

  6. hdu-1542 Atlantis(离散化+线段树+扫描线算法)

    题目链接: Atlantis Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/32768 K (Java/Others) ...

  7. 【POJ1151】【扫描线+线段树】Atlantis

    Description There are several ancient Greek texts that contain descriptions of the fabled island Atl ...

  8. POJ 1151 Atlantis (扫描线+线段树)

    题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...

  9. hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

    题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...

  10. HDU 3642 - Get The Treasury - [加强版扫描线+线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

随机推荐

  1. vs 统计有效代码行数

    1.Visual Studio中,crtl+Shift+F,输入b*[^:b#/]+.*$ ,查找范围:选择整个解决方案,查找选项:使用正则表达式,文件类型:*.cs;*.cshtml  选择查找全部

  2. python实现备份gitlab版本库并更改文件名

    脚本的功能是实现备份gitlab版本库,并修改备份后的文件名,成功后发送邮件至相关负责人,脚本如下: #!/usr/bin/env python # -*- coding:utf-8 -*- impo ...

  3. windows修改文件的修改或者创建时间

    https://www.online-tech-tips.com/computer-tips/how-to-change-the-last-modified-date-creation-date-an ...

  4. Robot Framework 常用关键字使用方法

    1. Select From Listid=sourceConnoracle_source 从下拉框选取值. 2. Select Radio button  name value 选择单选框.也可以点 ...

  5. 「6月雅礼集训 2017 Day8」gcd

    [题目大意] 定义times(a, b)表示用辗转相除计算a和b的最大公约数所需步骤. 那么有: 1. times(a, b) = times(b, a) 2. times(a, 0) = 0 3. ...

  6. 【BZOJ】1774: [Usaco2009 Dec]Toll 过路费

    [题意]给定无向图,距离定义为边权和+最大点权,询问若干个两点最短距离.n<=250. [算法]排序+floyd [题解]考虑floyd的过程是每次找一个中转点,为了在当前找到一条新路径时方便地 ...

  7. 【NOIP】提高组2013 转圈游戏

    [算法]快速幂运算 [题解]ans=(m*10^k+x)%n,用快速幂计算10^k即可,复杂度为O(log k). #include<cstdio> long long n,m,k,x,a ...

  8. CSS 竖线 点 时间节点

    效果如图 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  9. css3_box-shadow使用记录

    1.box-shadow这个属性有6个参数可设置,使用的时候比较少用,每次使用的时候都会忘记,故写此文作记录. 样式: /*1.添加此属性添加阴影*/ box-shadow: 0 0 10px 10p ...

  10. JS中的日期内置函数

    用JS中的日期内置函数实现在页面显示:“今天是:2013年9月26日14:32:45”. var date=new Date(Date.parse('9/26/2013 14:32:45'));   ...