这题有两种写法,而且是完全(几乎?)不一样的写法...并不是换了个方法来维护而已

  单调队列O(N):用一个队列维护a[]的单调递减,对于每个i满足a[队头]<=b[i],然后就可以算出以每一位为结尾的最大答案了

#include<stdio.h>
#include<cstring>
#include<iostream>
#include<cstdlib>
using namespace std;
const int maxn=,inf=1e9;
int n,fir,ans;
int a[maxn],b[maxn],q[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),read(b[i]);
int l=,r=;fir=;
for(int i=;i<=n;i++)
{
while(l<=r&&a[q[l]]>b[i])fir=max(fir,q[l++]+);
ans=max(ans,i-fir+);
while(l<=r&&a[q[r]]<=a[i])r--;
q[++r]=i;
}
printf("%d\n",ans);
}

  堆O(Nlogn):

    比赛时候的写法...实在没想到单调队列

    用two pointers,从l,r要扩展到l,r+1的时候只需要判断l~r里最大的a[]是不是<=b[r+1]就可以扩展了,这个可以用堆维护,左指针移动的时候删去堆中左指针的数。

#include<stdio.h>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<queue>
using namespace std;
const int maxn=,inf=1e9;
struct poi{int sum,pos;};
priority_queue<poi>q;
bool operator<(poi a,poi b){return a.sum<b.sum;}
int n,ans;
int a[maxn],b[maxn];
bool v[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline int find()
{
if(q.empty())return -inf;
poi t;for(t=q.top();v[t.pos]&&(!q.empty());q.pop(),t=q.top());
return q.empty()?-inf:t.sum;
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),read(b[i]);
for(int i=,j=;j<=n;i++)
{
j=max(i,j);
for(int t=find();j<=n;j++,t=find())
{
if(t>b[j])break;
q.push((poi){a[j],j});
ans=max(ans,j-i+);
}
v[i]=;
}
printf("%d\n",ans);
}

  这个其实也是可以用单调队列来维护的...之前想错导致我LOJ D2 T2被坑了T T

   单调队列可以兹磁找到队列中最值和删去最早的值两种操作...

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=, inf=1e9;
int n, L, R, ans;
int l[maxn], r[maxn], q[maxn];
void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline int max(int a, int b){return a>b?a:b;}
inline void qpush(int x)
{
while(L<=R &&l[q[R]]<=l[x]) R--;
q[++R]=x;
}
int main()
{
read(n);
for(int i=;i<=n;i++) read(l[i]), read(r[i]);
L=; R=;
for(int i=, j=;i<=n;i++)
{
j=max(i, j);
while(j<=n && ((L<=R)?l[q[L]]:-inf)<=r[j]) qpush(j++);
ans=max(ans, j-i);
if(q[L]==i) L++;
}
printf("%d\n", ans);
}

bzoj2276: [Poi2011]Temperature(单调队列/堆)的更多相关文章

  1. BZOJ 2276: [Poi2011]Temperature 单调队列

    Code: #include<bits/stdc++.h> #define maxn 3000000 using namespace std; void setIO(string s) { ...

  2. bzoj 2276: [Poi2011]Temperature——单调队列

    Description 某国进行了连续n天的温度测量,测量存在误差,测量结果是第i天温度在[l_i,r_i]范围内. 求最长的连续的一段,满足该段内可能温度不降 第一行n 下面n行,每行l_i,r_i ...

  3. BZOJ2276 [Poi2011]Temperature 【单调队列】

    题目链接 BZOJ2276 题解 一开始看错题,以为求的是可以不连续的,想出一个奇怪的线段树,发现空间根本开不下?? 题目要我们求连续的最长可能不下降区间 对于区间\([l,r]\)如果合法,当且仅当 ...

  4. BZOJ2276: [Poi2011]Temperature

    2276: [Poi2011]Temperature Time Limit: 20 Sec  Memory Limit: 32 MBSubmit: 293  Solved: 117[Submit][S ...

  5. 【POJ 2823】Sliding Window(单调队列/堆)

    BUPT2017 wintertraining(16) #5 D POJ - 2823 题意 给定n,k,求滑窗[i,i+k-1]在(1<=i<=n)的最大值最小值. 题解 单调队列或堆. ...

  6. POJ 3017 DP + 单调队列 + 堆

    题意:给你一个长度为n的数列,你需要把这个数列分成几段,每段的和不超过m,问各段的最大值之和的最小值是多少? 思路:dp方程如下:设dp[i]为把前i个数分成合法的若干段最大值的最小值是多少.dp转移 ...

  7. 洛谷P1725 琪露诺 (单调队列/堆优化DP)

    显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...

  8. poj3017 Cut the Sequence 单调队列 + 堆 dp

    描述 把一个正数列 $A$分成若干段, 每段之和 不超过 $M$, 并且使得每段数列的最大值的和最小, 求出这个最小值. 题目链接 题解 首先我们可以列出一个$O(n^2)$ 的转移方程 : $F_i ...

  9. bzoj 2276 [ Poi 2011 ] Temperature —— 单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2276 维护 l 递减的单调队列,队头的 l > 当前的 r 就出队,因为不能是连续一段 ...

随机推荐

  1. 说一说VIN码识别,车架号识别那些事

    对于有车一族的朋友来说,日常接触比较多的是车牌.行驶证.驾驶证,而知道VIN码/车架号码的比较少. 其实,对于车辆来说,VIN码/车架号码非常重要,它就像人的身份证一样,VIN码/车架号码是车辆唯一的 ...

  2. jmeter基础之录制篇

    一.前言 jmeter如今被越来越多人喜爱的一款测试工具,相比于loadrunner它体积特轻便.jmeter不仅用来做单接口测试,压测还能做性能,主要是一款开源的,可以写一个你需要的插件功能再添加里 ...

  3. Unity 编辑器扩展

    自定义检视面板的使用: 先是定义一个脚本文件,我们来修饰它的检视面板: [HelpURL("http://www.baidu.com")] public class Atr : M ...

  4. 【button】 按钮组件说明

    原型: <button size="[default | mini]" type="[primary | default | warn]" plain=& ...

  5. 【if控制器】-(某种情况成立就执行的场景)

    if 控制器   一般来判断某种特殊情况 成立,就执行. JEXL Expression to evaluate:此处直接填写需要进行判断的表达式即可 表达式支持: ==  是否等于,如${__jex ...

  6. 浙江天搜科技落棋人工智能,加速AI产业布局

    8月31日,2018年IFA大展在德国柏林正式开幕.IFA是全球三大消费电子展之一,在世界范围内久负盛名,被誉为“未来科技风向标”.在这个万众瞩目的展会上,号称“给智能世界铺上云的跑道,装上智能发动机 ...

  7. vim—自动缩进(编写Python脚本)

    大神推荐使用vim编写Python脚本,学而时积之,不亦乐乎! 使用vim编写Python脚本的时候不能正常缩进,需要修改vimrc文件 Ubuntu系统下vimrc文件的位置: $ cd /etc/ ...

  8. day-17 L1和L2正则化的tensorflow示例

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数.L2范数也被称为权重衰 ...

  9. 家用甲醛pm2.5温湿度传感器实验

    最近在装修房子,刷完墙漆铺完了木地板以后,屋里边有很大的味,所以就买了 攀藤科技的PMS5003ST G5ST PM2.5激光粉尘甲醛温湿度三合一传感器,打算自己测一下甲醛浓度,看看什么时候能够入住. ...

  10. Python 服务器端表单验证插件

    Python格式验证库 Cerberus 作者 MrStranger 关注 2016.08.02 14:44 字数 2140 阅读 79评论 0喜欢 1 Cerberus是一个验证Python对象.M ...