传送门

Description

Input

Output

Translation

·  给定k个长度为k的数组,把每个数组选一个元素加起来,这样共有kk种可能的答案,求最小的k个

Sample Input


Sample Output

 

Hint

k<=750

Solution

  显然可以一行一行做,同时如果S+now[j]最小,需要S最小。即我们只需要记录前i行的最小的k个ans,分别与当前行的k个相加,从k2个ans中选择前k个小的记录。显然前k小的可以开一个大根堆维护。即如果size>k则pop。这样一共有k次转移,每次转移有k2个状态,维护k的堆的复杂度为Logk,这样总复杂度为O(k3logk)

  易于通过数学归纳证明取第i行的最小的只需要与前i-1行最小的k个ans相加得到。这样我们不妨用数组ans记录前i行最小的k个ans,现在我们考虑我们有两个数组a,b,需要取k个ans最小。不妨设a和b都是有序的,我们显然有如下关系:

  a1+b1≤a1+b2≤a1+b3≤a1+b4≤……≤a1+bk

  a2+b1≤a2+b2≤a2+b3≤a2+b4≤……≤a2+bk

  ……

  ak+b1≤ak+b2≤ak+b3≤ak+b4≤……≤ak+bk

这样显然ai+bj可能成为前k小的ans当且仅当ai+bj-1是前k小的ans。

我们维护一个可能成为ans的序列,每次取这个序列中最小,显然最小值可以成为合法的ans。同时不妨设这个值为ai+bj,那么我们将ai+bj+1压入序列,因为它可能成为合法的ans。

初始化上,因为ai+b1可能成为合法的ans,我们将这k个全部压入队列中。

Code

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 1010 inline void qr(int &x) {
char ch=getchar(),lst=NULL;
while(ch>''||ch<'') lst=ch,ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if(lst=='-') x=-x;
} template <typename T>
inline T mmax(const T &a,const T &b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T &a,const T &b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T &a) {if(a>=) return a;return -a;} template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;} int k,MU[maxn],ans[maxn]; struct Zay {
int v,s;
Zay(int a=,int b=) {v=a;s=b;}
inline bool operator <(const Zay &others) const{return this->v>others.v;}
}; std::priority_queue<Zay>Q;
void clear(); int main() {
while(~scanf("%d",&k)) {
clear();
for(int i=;i<=k;++i) qr(ans[i]);
for(int i=;i<=k;++i) {
memset(MU,,sizeof MU);
for(int j=;j<=k;++j) {
qr(MU[j]);
}
std::sort(MU+,MU++k);
while(!Q.empty()) Q.pop();
for(int j=;j<=k;++j) {
Q.push(Zay(ans[j]+MU[],));
}
for(int j=;j<=k;++j) {
Zay temp=Q.top();Q.pop();
ans[j]=temp.v;
if(temp.s<k) Q.push(Zay(temp.v-MU[temp.s]+MU[temp.s+],temp.s+));
}
}
for(int i=;i<k;++i) printf("%d ",ans[i]);printf("%d\n",ans[k]);
}
return ;
} void clear() {
memset(ans,,sizeof ans);
}

Summary

在堆的应用中,维护一坨可能合法的解进行操作,是一种常用的思路。比如本题和dijkstra算法都是这个思路。这一坨合法的解一般满足下面两个条件:

第一,这坨解中最大/小的解一定是合法的解。比如本题中,序列中最小的一定是合法的解,dijkstra算法中,堆中权值和最小的解一定是到该点的最短路等等

第二,通过寻找合法解,可以获得其他可能解。比如在本题中,ai+bj合法时,ai+bj+1是可能解。在dijkstra算法中,找到到一个点的最短路可以更新和它相邻的点的可能最短路压入堆中。

【优先队列】【UVa11997】K Smallest Sums的更多相关文章

  1. 【暑假】[实用数据结构]UVa11997 K Smallest Sums

    UVa11997 K Smallest Sums  题目: K Smallest Sums You're given k arrays, each array has k integers. Ther ...

  2. UVA-11997 K Smallest Sums

    UVA - 11997 K Smallest Sums Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & ...

  3. uva11997 K Smallest Sums&&UVALive 3135 Argus(优先队列,多路归并)

    #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #inc ...

  4. UVA11997 K Smallest Sums

    思路 经典的k路归并问题 问题先转换为2路的有序表归并 先让A[1~k]都和B[1]相加,然后加入堆中,取出堆顶(A[x]+B[y])之后,再放入A[x]+B[y+1] 代码 #include < ...

  5. 题解——UVA11997 K Smallest Sums

    题面 背景 输入 输出 翻译(渣自翻) 给定K个包含K个数字的表,要求将其能产生的\( k^{k} \)个值中最小的K个输出出来 题解 k路归并问题的经典问题 可以转化为二路归并问题求解 考虑A[], ...

  6. 11997 - K Smallest Sums(优先队列)

    11997 - K Smallest Sums You’re given k arrays, each array has k integers. There are kk ways to pick ...

  7. UVa 11997 K Smallest Sums 优先队列&amp;&amp;打有序表&amp;&amp;归并

    UVA - 11997 id=18702" target="_blank" style="color:blue; text-decoration:none&qu ...

  8. D - K Smallest Sums(多路归并+贪心)

    Problem K K Smallest Sums You're given k arrays, each array has k integers. There are kk ways to pic ...

  9. 优先队列 UVA 11997 K Smallest Sums

    题目传送门 题意:训练指南P189 分析:完全参考书上的思路,k^k的表弄成有序表: 表1:A1 + B1 <= A1 + B2 <= .... A1 + Bk 表2:A2 + B1 &l ...

随机推荐

  1. Java并发基础--Lock的学习

    一.Lock的出现 Lock的主要作用实现线程之间的同步互斥,与synchronized关键字的效果是一样的,synchronized是Java语言内置的特性,那么为什么又出现了Lock呢?原因是sy ...

  2. Python基础框架和工具

    最近在学Python金融大数据分析,在安装Python进行大数据分析的环境时遇到很多问题,例如:在安装pandas包时候就要到各种错误,总是缺少很多安装包,最后发现利用Python的Anaconda进 ...

  3. New Year and Domino:二维前缀和

    题目描述: They say "years are like dominoes, tumbling one after the other". But would a year f ...

  4. Halcon介绍和下载安装视频教程

    ------------------------Halcon,Visionpro高清视频教程,点击下载视频--------------------------

  5. error:no module named StringIO or cStringIO

    一般遇到没有某个模块问题的时候,通常的解决方法是pip相应的模块: 不过,鉴于Python2和python3的不同(让人头疼) 解决方法:在python3中,该模块被新的模块取代,即io. 重新imp ...

  6. Java中String类

    String类 一.String类的用途 对字符串的存储与操作,即包含多个字符的字符数据,这个String类提供了数值不可改变的字符串. String类为什么不可改变的字符串,因为String类是fa ...

  7. 什么是Frozen Binary

    对于Python来说,你可以将Python的字节码,PVM(也就是解析器),以及需要的相关类库,打包成一个package,这个package实际上是一个二进制可执行文件,这样,用户获取到这个packa ...

  8. 2017软工第二次作业 - 本周PSP(补交)

    每周例行报告 1.本周PSP 2. 本周进度条 3.累计进度图 4. 本周PSP饼状图

  9. 福大软工1816 · 第五次作业 - 结对作业2_map与unordered map的比较测试

    测试代码: #include <iostream> using namespace std; #include <string> #include <windows.h& ...

  10. LintCode-105.复制带随机指针的链表

    复制带随机指针的链表 给出一个链表,每个节点包含一个额外增加的随机指针可以指向链表中的任何节点或空的节点. 返回一个深拷贝的链表. 挑战 可否使用O(1)的空间 标签 哈希表 链表 优步 code / ...