LIS,最长递增子序列
说明见:http://blog.csdn.net/sdjzping/article/details/8759870

 #include <iostream>
#include <cstdlib> using namespace std; int LIS(int* arr, int len) {
if (arr == NULL || len < ) return ;
int LIS[len] = {};
int mlen = ;
for (int i=; i<len; i++) {
LIS[i] = ;
for (int j = ; j < i; j++) {
if (arr[j] < arr[i] && LIS[i] < LIS[j] + ) {
LIS[i] = LIS[j] + ;
}
}
if (LIS[i] > mlen) {
mlen = LIS[i];
}
}
return mlen;
} int main() {
int arr[] = {, -, , -, , -, , -};
int len = sizeof(arr) / sizeof(arr[]);
cout<<LIS(arr, len)<<endl;
system("pause");
return ;
}

再给出nlogn的解法,其中len2val数组就是记录当前LIS长度时结尾的数字(可能情况下的最小值,如1,3和1,2同样可以构成长度为2的LIS但是取len2val[2]=2),关于这个数组的详细说明,可以参考第一个给出的连接,相对于第一个算法的改进就是该数组是有序的,可以使用二分搜索,即在数组中找到第一个比待处理值V大或相等的index设为I(就是序列长度),那么这个V必然可以插入到以len2val[I-1]结尾的长度为I-1的序列后部,形成新序列的长度为I,因而更新数组len2val[I] = V(更新是因为当前值肯定是大于等于V的,因为一开始就是根据这个条件进行搜索的)。这个查找的过程可以用STL中的lower_bound来做,这里自己按照源码写了一个直接返回索引的版本,STL中返回的是迭代器(数组迭代器就是元素指针,比较时还需减掉数组起始位置,才能得到索引)。

 int idx_lower_bound(int a[], int begin, int end, int target) {
int count = end - begin;
int first = begin;
while (count > ) {
int step = count/;
int idx = first + step;
if (a[idx] < target) {
first = ++idx;
count = count - step - ;
} else {
count = step;
}
} return first;
} int LIS_NLOGN(int arr[], int len) {
if (arr == NULL || len < ) {
return ;
}
int* len2idx = new int[len+]; len2idx[] = arr[];
int maxlen = ;
for (int i=; i<len; i++) {
char ch = arr[i];
int upper = idx_lower_bound(len2idx, , maxlen + , ch);
len2idx[upper] = ch;
if (upper > maxlen) {
maxlen = upper;
}
}
return maxlen;
}

LCS,最长公共子序列

 #include <iostream>
#include <cstdlib>
#include <cstring> using namespace std; int max(int a, int b) {
return a > b ? a : b;
} int LCS(const char* s1, int len1, const char* s2, int len2) {
if (s1 == NULL || s2 == NULL || len1 < || len2 < ) return ; int dp[len1 + ][len2 + ]; for (int i=; i<=len1; i++) {
for (int j=; j<=len2; j++) {
dp[i][j] = ;
}
} for (int i=; i<= len1; i++) {
for (int j=; j<=len2; j++) {
if (s1[i-] == s2[j-]) {
dp[i][j] = dp[i-][j-] + ;
} else {
dp[i][j] = max(dp[i-][j], dp[i][j-]);
}
}
}
for (int i=; i<=len1; i++) {
for (int j=; j<=len2; j++) {
cout<<" "<<dp[i][j];
}
cout<<endl;
}
return dp[len1][len2];
}; int main() {
const char* s1 = "helloyyc";
const char* s2 = "xellxddc"; cout<<LCS(s1, strlen(s1), s2, strlen(s2))<<endl; system("pause");
return ;
}

回顾经典问题算法:LIS, LCS-(DP类别)的更多相关文章

  1. LIS LCS n^2和nlogn解法 以及LCIS

    首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...

  2. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  3. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  4. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  5. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  6. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  7. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  8. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

  9. 【十大经典数据挖掘算法】k

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

随机推荐

  1. 【微信小程序】——rpx、px、rem等尺寸间关系浅析

    最近开发微信小程序,在写样式表的时候发现用PX的效果不太理想,而官方文档用rpx来做响应式布局单位,就仔细研究了下,在此做个小总结: 这里先引用官方定义的尺寸单位‘rpx’:可以根据屏幕宽度进行自适应 ...

  2. 爬虫5:beautifulsoup

      灵活方便的网页解析库,处理高效,支持多种解析器,利用它不用编写正则表达式即可方便的实现网页信息的提取     一. BeautifulSoup的几种解析库   解析器 使用方法 优势 劣势 Pyt ...

  3. python 对mongodb进行压力测试

    最近对mongoDB数据库进行性能分析,需要对数据库进行加压. 加压时,最初采用threading模块写了个多线程程序,测试的效果不理想. 单机读数据库每秒请求数只能达到1000次/s.而开发的jav ...

  4. 编译原理(一)绪论概念&文法与语言

    绪论概念&文法与语言 以老师PPT为标准,借鉴部分教材内容,AlvinZH学习笔记. 绪论基本概念 1. 低级语言:字位码.机器语言.汇编语言.与特定的机器有关,功效高,但使用复杂.繁琐.费时 ...

  5. docker版redmine安装部署

    数据库准备 docker run -d --name some-postgres -e POSTGRES_PASSWORD=secret -e POSTGRES_USER=redmine postgr ...

  6. smtp自动发送邮件demo

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Net ...

  7. 04-树6 Complete Binary Search Tree (30 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  8. 03-树3 Tree Traversals Again (25 分)

    An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example ...

  9. Mac 10.12高级防火墙pfctl教程收集(待实践)

    在Mac 10.10之前使用ipfw.之后升级为pfctl.由于Mac自带的GUI防火墙只能针对软件进行放开,且无法针对特定端口入站及出站进行管理.所以使用pfctl能解决这类问题. 收集教程如下: ...

  10. spring boot快速入门 1 :创建项目、 三种启动项目方式

    准备工作: (转载)IDEA新建项目时,没有Spring Initializr选项 最近开始使用IDEA作为开发工具,然后也是打算开始学习使用spring boot. 看着博客来进行操作上手sprin ...