分类问题中的“维数灾难” - robotMax

在看机器学习的论文时,经常会看到有作者提到“curse of dimensionality”,中文译为“维数灾难”,这到底是一个什么样的“灾难”?本文将通过一个例子来介绍这令人讨厌的“curse of dimensionality”以及它在分类问题中的重要性。

  假设现在有一组照片,每一张照片里有一只猫或者一条狗。我们希望设计一个分类器可以自动地将照片中的动物辨别开来。为了实现这个目标,首先需要考虑如何将照片中的动物的特征用数字的形式表达出来。猫与狗的最大区别是什么?有人可能首先想到猫与狗的颜色不一样,有人则可能想到猫与狗的大小不一样。假设从颜色来辨别猫与狗,可以设计三个特征:红色的平均值,绿色的平均值和蓝色的平均值,来决定照片中的动物属于哪一个类:

1 if 0.5 * red + 0.3 * green + 0.2 * blue > 0.6:
2 return cat
3 else:
4 return dog

  但是,仅仅通过这三个特征进行分类可能无法得到一个令人满意的结果。因此,可以再增加一些特征:大小,纹理等。也许增加特征之后,分类的结果会有所提高。但是,特征是不是越多越好?

图1 过了某一个值后,分类器的性能随着维数的增加不升反降

  从图1可以看到分类器的性能随着特征个数的变化不断增加,过了某一个值后,性能不升反降。这种现象称为“维数灾难”。

  继续之前的例子。假设地球上猫和狗的数量是无限的。由于有限的时间和计算能力,我们仅仅选取了10张照片作为训练样本。我们的目的是基于这10张照片来训练一个线性分类器,使得这个线性分类器可以对剩余的猫或狗的照片进行正确分类。我们从只用一个特征来辨别猫和狗开始:

图2

  从图2可以看到,如果仅仅只有一个特征的话,猫和狗几乎是均匀分布在这条线段上,很难将10张照片线性分类。那么,增加一个特征后的情况会怎么样:

图3

  增加一个特征后,我们发现仍然无法找到一条直线将猫和狗分开。所以,考虑需要再增加一个特征:

图3

图4

  此时,我们终于找到了一个平面将猫和狗分开。需要注意的是,只有一个特征时,假设特征空间是长度为5的线段,则样本密度是10/5=2。有两个特征时,特征空间大小是5*5=25,样本密度是10/25=0.4。有三个特征时,特征空间大小是5*5*5=125,样本密度是10/125=0.08。如果继续增加特征数量,样本密度会更加稀疏,也就更容易找到一个超平面将训练样本分开。因为随着特征数量趋向于无限大,样本密度非常稀疏,训练样本被分错的可能性趋向于零。当我们将高维空间的分类结果映射到低维空间时,一个严重的问题出现了:

图5

  从图5可以看到将三维特征空间映射到二维特征空间后的结果。尽管在高维特征空间时训练样本线性可分,但是映射到低维空间后,结果正好相反。事实上,增加特征数量使得高维空间线性可分,相当于在低维空间内训练一个复杂的非线性分类器。不过,这个非线性分类器太过“聪明”,仅仅学到了一些特例。如果将其用来辨别那些未曾出现在训练样本中的测试样本时,通常结果不太理想。这其实就是我们在机器学习中学过的过拟合问题。

图6

  尽管图6所示的只采用2个特征的线性分类器分错了一些训练样本,准确率似乎没有图4的高,但是,采用2个特征的线性分类器的泛化能力比采用3个特征的线性分类器要强。因为,采用2个特征的线性分类器学习到的不只是特例,而是一个整体趋势,对于那些未曾出现过的样本也可以比较好地辨别开来。换句话说,通过减少特征数量,可以避免出现过拟合问题,从而避免“维数灾难”。

图7

  图7从另一个角度诠释了“维数灾难”。假设只有一个特征时,特征的值域是0到1,每一只猫和狗的特征值都是唯一的。如果我们希望训练样本覆盖特征值值域的20%,那么就需要猫和狗总数的20%。我们增加一个特征后,为了继续覆盖特征值值域的20%就需要猫和狗总数的45%(0.45^2=0.2)。继续增加一个特征后,需要猫和狗总数的58%(0.58^3=0.2)。随着特征数量的增加,为了覆盖特征值值域的20%,就需要更多的训练样本。如果没有足够的训练样本,就可能会出现过拟合问题。

  通过上述例子,我们可以看到特征数量越多,训练样本就会越稀疏,分类器的参数估计就会越不准确,更加容易出现过拟合问题。“维数灾难”的另一个影响是训练样本的稀疏性并不是均匀分布的。处于中心位置的训练样本比四周的训练样本更加稀疏。

图8

  假设有一个二维特征空间,如图8所示的矩形,在矩形内部有一个内切的圆形。由于越接近圆心的样本越稀疏,因此,相比于圆形内的样本,那些位于矩形四角的样本更加难以分类。那么,随着特征数量的增加,圆形的面积会不会变化呢?这里我们假设超立方体(hypercube)的边长d=1,那么计算半径为0.5的超球面(hypersphere)的体积(volume)的公式为:

公式1

图9

  从图9可以看出随着特征数量的增加,超球面的体积逐渐减小直至趋向于零,然而超立方体的体积却不变。这个结果有点出乎意料,但部分说明了分类问题中的“维数灾难”:在高维特征空间中,大多数的训练样本位于超立方体的角落。

图10

  图10显示了不同维度下,样本的分布情况。在8维特征空间中,共有2^8=256个角落,而98%的样本分布在这些角落。随着维度的不断增加,公式2将趋向于0,其中dist_max和dist_min分别表示样本到中心的最大与最小距离。

公式2

  因此,在高维特征空间中对于样本距离的度量失去意义。由于分类器基本都依赖于如Euclidean距离,Manhattan距离等,所以在特征数量过大时,分类器的性能就会出现下降。

  所以,我们如何避免“维数灾难”?图1显示了分类器的性能随着特征个数的变化不断增加,过了某一个值后,性能不升反降。这里的某一个值到底是多少呢?目前,还没有方法来确定分类问题中的这个阈值是多少,这依赖于训练样本的数量,决策边界的复杂性以及分类器的类型。理论上,如果训练样本的数量无限大,那么就不会存在“维数灾难”,我们可以采用任意多的特征来训练分类器。事实上,训练样本的数量是有限的,所以不应该采用过多的特征。此外,那些需要精确的非线性决策边界的分类器,比如neural network,knn,decision trees等的泛化能力往往并不是很好,更容易发生过拟合问题。因此,在设计这些分类器时应当慎重考虑特征的数量。相反,那些泛化能力较好的分类器,比如naive Bayesian,linear classifier等,可以适当增加特征的数量。

  如果给定了N个特征,我们该如何从中选出M个最优的特征?最简单粗暴的方法是尝试所有特征的组合,从中挑出M个最优的特征。事实上,这是非常花时间的,或者说不可行的。其实,已经有许多特征选择算法(feature selection algorithms)来帮助我们确定特征的数量以及选择特征。此外,还有许多特征抽取方法(feature extraction methods),比如PCA等。交叉验证(cross-validation)也常常被用于检测与避免过拟合问题。

参考资料:

[1] Vincent Spruyt. The Curse of Dimensionality in classification. Computer vision for dummies. 2014. [Link]

分类问题中的“维数灾难” - robotMax的更多相关文章

  1. [转]The Curse of Dimensionality(维数灾难)

    原文章地址:维度灾难 - 柳枫的文章 - 知乎 https://zhuanlan.zhihu.com/p/27488363 对于大多数数据,在一维空间或者说是低维空间都是很难完全分割的,但是在高纬空间 ...

  2. 【cs229-Lecture17】离散与维数灾难

    主要内容: 解决MDP问题的算法: 离散化: 模型MDP的同化型: (model/similator) 拟合值迭代算法: Q函数: 近似政策迭代: 笔记转自:http://blog.csdn.net/ ...

  3. kNN的维数灾难与PCA降维

    主成分分析 PCA 协方差矩阵 假设我们有 \[ X = \begin{pmatrix}X_1\\X_2\\\vdots\\X_m\end{pmatrix}\in\mathbb{R}^{m\times ...

  4. LR特征维数特别大实时计算问题

    美团 https://tech.meituan.com/machinelearning-data-feature-process.html 维数灾难 待续...

  5. /编写一个函数,要求从给定的向量A中删除元素值在x到y之间的所有元素(向量要求各个元素之间不能有间断), 函数原型为int del(int A ,int n , int x , int y),其中n为输入向量的维数,返回值为删除元素后的维数

    /** * @author:(LiberHome) * @date:Created in 2019/2/28 19:39 * @description: * @version:$ */ /* 编写一个 ...

  6. C#数组维数及不同维数中元素个数的获取

    简单理解有关数组维数的概念: 1.编程中用到的多维的数组,最多也就是二维数组了 2.数组的维数从0开始计算 using System; using System.Collections.Generic ...

  7. tensorflow中张量(tensor)的属性——维数(阶)、形状和数据类型

    tensorflow的命名来源于本身的运行原理,tensor(张量)意味着N维数组,flow(流)意味着基于数据流图的计算,所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程. ...

  8. 剑指Offer01之二维数组中查找目标数

    剑指Offer之二维数组中查找目标数 题目描述 ​ 在一个二维数组中(每个一维数组的长度相等),每一行都是从左到右递增的顺序排序,每一列都是从上到下递增的顺序排序,输入这样一个二维数组和一个整数,判断 ...

  9. HOG参数简介及Hog特征维数的计算(转)

    HOG构造函数 CV_WRAP HOGDescriptor() :winSize(64,128), blockSize(16,16), blockStride(8,8),      cellSize( ...

随机推荐

  1. TensorFlow学习('utf-8' codec can't decode byte 0xff in position 0: invalid start byte)

    使用语句: image_raw_data = tf.gfile.GFile("./picture.jpg", "r").read() 读取图像时报错如下: Un ...

  2. Linux中PATH环境变量的作用和使用方法

    关于PATH的作用:PATH说简单点就是一个字符串变量,当输入命令的时候LINUX会去查找PATH里面记录的路径.比如在根目录/下可以输入命令ls,在/usr目录下也可以输入ls,但其实ls这个命令根 ...

  3. Linux Ubuntu安装sogou中文输入法

    在linux下开发,有时还是需要使用中文输入法的,每次安装的时候都觉得痛苦,这次做下记录,方便下次安装. 安装fcitx 安装sogou输入法之前,需要安装fcitx(Free Chinese Inp ...

  4. CC2640R2F&TI-RTOS 拿到 TI CC2640R2F 开发板 第四件事就是 修改第三件事信号量超时改为 事件 超时,并增加 事件控制 ,用于控制LED 闪烁时间或者关闭

    /* * data_process.c * * Created on: 2018年7月5日 * Author: admin */ #include "board_led.h" #i ...

  5. SPOJ 4487. Can you answer these queries VI splay

    题目链接:点击打开链接 题意比較明显,不赘述. 删除时能够把i-1转到根,把i+1转到根下 则i点就在 根右子树 的左子树,且仅仅有i这一个 点 #include<stdio.h> #in ...

  6. 有关dubbo面试的那些事儿

    dubbo是什么 dubbo是一个分布式框架,远程服务调用的分布式框架,其核心部分包含: 集群容错:提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集 ...

  7. java基础需要掌握的内容

    一.Java的基本程序设计结构 二.对象与类 三.继承 四.接口.lambda表达式与内部类 五.异常,断言与日志 六.泛型程序设计 七.集合 八.并发(线程) 九.输入与输出(IO流) 十.网络 十 ...

  8. vim内替换文件内容

    几个常用的方法如下: :%s/foo/bar/g 把全部foo替换为bar,全局替换 :s/foo/bar/g 当前行替换foo为bar :%s/foo/bar/gc 替换每个foo为bar,但需要确 ...

  9. ionic3 返回多个页面的写法

    直接上代码 ionic3 返回2步  3步  或者多部 this.navCtrl.popTo(this.navCtrl.getByIndex(this.navCtrl.length()-3));   ...

  10. MySQL->处理重复数据[20180517]

    限制数据重复的方式:表上增加主键(Primary Key)或增加唯一性索引(Unique)     主键对重复资料进行限制,这样资料在导入时就无法重复插入 create table primary_t ...