我们学习一下分桶表,其实分区和分桶这两个概念对于初学者来说是比较难理解的。但对于理解了的人来说,发现又是如此简单。

我们先建立一个分桶表,并尝试直接上传一个数据

create table student4(sno int,sname string,sex string,sage int, sdept string) clustered by(sno) into 3 buckets row format delimited fields terminated by ',';
set hive.enforce.bucketing = true;强制分桶。
load data local inpath '/home/hadoop/hivedata/students.txt' overwrite into table student4;

我们看到虽然设置了强制分桶,但实际student表下面只有一个students一个文件。分桶也就是分区,分区数量等于文件数,所以上面方法并没有分桶。

现在,我们用插入的方法给另外一个分桶表传入同样数据

create table student4(sno int,sname string,sex string,sage int, sdept string) clustered by(sno) into 3 buckets row format delimited fields terminated by ',';
set hive.enforce.bucketing = true;强制分桶。
load data local inpath '/home/hadoop/hivedata/students.txt' overwrite into table student4;
我们看到虽然设置了强制分桶,但实际STUDENT表下面只有一个STUDENTS一个文件。
分桶也就是分区,分区数量等于文件数,所以上面方法并没有分桶。
#创建第2个分桶表
create table stu_buck(sno int,sname string,sex string,sage int,sdept string)
clustered by(sno)
sorted by(sno DESC)
into 4 buckets
row format delimited
fields terminated by ','; #设置变量,设置分桶为true, 设置reduce数量是分桶的数量个数
set hive.enforce.bucketing = true;
set mapreduce.job.reduces=4;
#开会往创建的分通表插入数据(插入数据需要是已分桶, 且排序的)
#可以使用distribute by(sno) sort by(sno asc) 或是排序和分桶的字段相同的时候使用Cluster by(字段)
#注意使用cluster by 就等同于分桶+排序(sort)
insert into table stu_buck
select sno,sname,sex,sage,sdept from student distribute by(sno) sort by(sno asc); Query ID = root_20171109145012_7088af00-9356-46e6-a988-f1fc5f6d2e13
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 4
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Starting Job = job_1510197346181_0014, Tracking URL = http://server71:8088/proxy/application_1510197346181_0014/
Kill Command = /usr/local/hadoop/bin/hadoop job  -kill job_1510197346181_0014
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 4
2017-11-09 14:50:59,642 Stage-1 map = 0%,  reduce = 0%
2017-11-09 14:51:38,682 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 5.04 sec
2017-11-09 14:52:31,935 Stage-1 map = 100%,  reduce = 50%, Cumulative CPU 7.91 sec
2017-11-09 14:52:33,467 Stage-1 map = 100%,  reduce = 67%, Cumulative CPU 15.51 sec
2017-11-09 14:52:39,420 Stage-1 map = 100%,  reduce = 83%, Cumulative CPU 22.5 sec
2017-11-09 14:52:40,953 Stage-1 map = 100%,  reduce = 92%, Cumulative CPU 25.86 sec
2017-11-09 14:52:42,243 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 28.01 sec
MapReduce Total cumulative CPU time: 28 seconds 10 msec
Ended Job = job_1510197346181_0014
Loading data to table default.stu_buck
Table default.stu_buck stats: [numFiles=4, numRows=22, totalSize=527, rawDataSize=505]
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1  Reduce: 4   Cumulative CPU: 28.01 sec   HDFS Read: 18642 HDFS Write: 819 SUCCESS
Total MapReduce CPU Time Spent: 28 seconds 10 msec
OK
Time taken: 153.794 seconds

我们设置reduce的数量为4,学过mapreduce的人应该知道reduce数等于分区数,也等于处理的文件数量。


把表或分区划分成bucket有两个理由
1,更快,桶为表加上额外结构,链接相同列划分了桶的表,可以使用map-side join更加高效。
2,取样sampling更高效。没有分区的话需要扫描整个数据集。
 
hive> create table bucketed_user (id int,name string)
> clustered by (id) sorted by (id asc) into 4 buckets;
重点1:CLUSTERED BY来指定划分桶所用列和划分桶的个数。HIVE对key的hash值除bucket个数取余数,保证数据均匀随机分布在所有bucket里。
重点2:SORTED BY对桶中的一个或多个列另外排序
 
 
总结:我们发现其实桶的概念就是MapReduce的分区的概念,两者完全相同。物理上每个桶就是目录里的一个文件,一个作业产生的桶(输出文件)数量和reduce任务个数相同。
而分区表的概念,则是新的概念。分区代表了数据的仓库,也就是文件夹目录。每个文件夹下面可以放不同的数据文件。通过文件夹可以查询里面存放的文件。但文件夹本身和数据的内容毫无关系。
桶则是按照数据内容的某个值进行分桶,把一个大文件散列称为一个个小文件。
 
这些小文件可以单独排序。如果另外一个表也按照同样的规则分成了一个个小文件。两个表join的时候,就不必要扫描整个表,只需要匹配相同分桶的数据即可。效率当然大大提升。
同样,对数据抽样的时候,也不需要扫描整个文件。只需要对每个分区按照相同规则抽取一部分数据即可。

HIVE-分桶表的详解和创建实例的更多相关文章

  1. hive分桶表bucketed table分桶字段选择与个数确定

    为什么分桶 (1)获得更高的查询处理效率.桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构.具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map ...

  2. 一起学Hive——创建内部表、外部表、分区表和分桶表及导入数据

    Hive本身并不存储数据,而是将数据存储在Hadoop的HDFS中,表名对应HDFS中的目录/文件.根据数据的不同存储方式,将Hive表分为外部表.内部表.分区表和分桶表四种数据模型.每种数据模型各有 ...

  3. hive中的分桶表

    桶表也是一种用于优化查询而设计的表类型.创建通表时,指定桶的个数.分桶的依据字段,hive就可以自动将数据分桶存储.查询时只需要遍历一个桶里的数据,或者遍历部分桶,这样就提高了查询效率 ------创 ...

  4. hive 分区表和分桶表

    1.创建分区表 hive> create table weather_list(year int,data int) partitioned by (createtime string,area ...

  5. 第2节 hive基本操作:11、hive当中的分桶表以及修改表删除表数据加载数据导出等

    分桶表 将数据按照指定的字段进行分成多个桶中去,说白了就是将数据按照字段进行划分,可以将数据按照字段划分到多个文件当中去 开启hive的桶表功能 set hive.enforce.bucketing= ...

  6. Hive 学习之路(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive中的表对应为HDFS上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为HDFS上表目录的子目录,数据按照分区存储在子目录中.如 ...

  7. Hive 系列(五)—— Hive 分区表和分桶表

    一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子 ...

  8. Hive ACID和事务表支持详解

    一.ACID介绍 ACID就是常见数据库事务的四大特性:Atomicity(原子性).Consistency(一致性).Isolation(隔离性).Durability(持久性). 在Hive 0. ...

  9. Hive 教程(四)-分区表与分桶表

    在 hive 中分区表是很常用的,分桶表可能没那么常用,本文主讲分区表. 概念 分区表 在 hive 中,表是可以分区的,hive 表的每个区其实是对应 hdfs 上的一个文件夹: 可以通过多层文件夹 ...

随机推荐

  1. npm ERR! path: '/usr/local/lib/node_modules/npm/node_modules/cacache/node_modules/ssri' }

    在安装appium 或者升级npm的过程中会遇到这个问题.出错时的代码提示如下: npm ERR! path /usr/local/lib/node_modules/npm/node_modules/ ...

  2. 串口编程 System.IO.Ports.SerialPort类

    从Microsoft .Net 2.0版本以后,就默认提供了System.IO.Ports.SerialPort类,用户可以非常简单地编写少量代码就完成串口的信息收发程序.本文将介绍如何在PC端用C# ...

  3. Spring的IoC与AOP的理解

    1.Spring它到底是什么? Spring是一个开源的Java应用程序开发框架,为了解决企业应用开发的复杂性而创建的.   在spring中,它会认为一切Java类都是资源,而资源就是Bean,容纳 ...

  4. 导出当前域内所有用户hash的技术整理

    0x00目标: 导出当前域内所有用户的hash 0x01测试环境: 域控:server2008 r2 杀毒软件:已安装* 域控权限:可使用net use远程登陆,不使用3389 0x02测试方法: ( ...

  5. 【转】多线程Core Data

    原文地址:http://www.cocoanetics.com/2012/07/multi-context-coredata/ Multi-Context CoreData When you star ...

  6. Java 读取Excel数据——POI-3.11 XSSF

    POI  - the Java API for Microsoft Documents 1.在Apache官网下载Apache最新poi版本:poi-bin-3.11-20141221.zip,解压: ...

  7. Tomcat中容器是什么以及容器与容器之间的数量关系。

    Tomcat容器到底是什么 学java有一小段时间了,一直使用Tomcat,也知道Tomcat是一个大的Servlet容器,里面还有许多子容器,容器之间都是相互嵌套的.也看过一下接收Tomcat的文章 ...

  8. python with原型

    @Python 的 with 语句详解   这篇文章主要介绍了Python 的 with 语句,本文详细讲解了with语句.with语句的历史.with语句的使用例子等,需要的朋友可以参考下   一. ...

  9. Guava包学习--Table

    Table,顾名思义,就好像HTML中的Table元素一样,其实就是行+列去确定的值,更准确的比喻其实就是一个二维矩阵. 其实它就是通过行+列两个key去找到一个value,然后它又containsv ...

  10. RSA加密算法和签名算法

    RSA加密算法 RSA公钥加密体制包含如下3个算法:KeyGen(密钥生成算法),Encrypt(加密算法)以及Decrypt(解密算法). .密钥生成算法以安全常数作为输入,输出一个公钥PK,和一个 ...