题面

搞了一晚上斜率优化,大概懂了一点,写写

原来常用的优化dp方法:做前缀和,预处理,数据结构维护

现在有转移方程长这样的一类dp:$dp[i]=min(dp[i],k[i]*x[j]+y[j]+c[i]+a)$,其中$c[i],k[i],x[j],y[j]$都是关于$i$或者$j$的变量,在$i$或者$j$确定时不变,$a$是个常量

然后发现$x[j]$带着一个$k[i]$的系数,不好优化

从另一个角度考虑,想想高中老师教给我们的线性规划

可以发现因为对于每次转移的$i$来说$c[i],k[i]$都不变,我们可以把$k[i]*x[j]+y[j]$看做是一条直线(初中的一次函数),$k[i]$是斜率,然后$x[j]$是横坐标,$y[j]$是纵坐标,别的都是关于$i$的变量或者常量,不用管。那么实际上我们求的$dp$数组的最终结果就是这条直线的截距的最值(初中的与y轴的交点)

然后我们发现发现对于每个下标我们都可以依照上面的$x[j],y[j]$把它表示成平面上的一个点$(x,y)$,然后这些点会形成一个点集,根据线性规划的知识,可以发现根据斜率的正/负我们的最优决策点都在下/上凸包上,于是可以优化了

当我们每次转移用到的斜率单调时,直接用单调队列维护凸包,先把斜率大/小的都踢掉,转移之后再把现在不在凸包上的点也都踢掉,最后把当前点加进去

当我们每次转移用到的斜率不单调时,就不能根据斜率直接踢了,但仍然用单调队列维护凸包,只是把找最优决策点用二分代替

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long len[N],dp[N],que[N],n,x,f,b;
inline long long c1(int p){return len[p]+p;}
inline long long c2(int p){return c1(p)+x+;}
inline long long K(int p){return *c1(p);}
inline long long X(int p){return c2(p);}
inline long long Y(int p){return c2(p)*c2(p)+dp[p];}
inline long long S(int a,int b){return (double)(Y(b)-Y(a))/(double)(X(b)-X(a));}
int main()
{
scanf("%lld%lld",&n,&x);
for(int i=;i<=n;i++)
scanf("%lld",&len[i]),len[i]+=len[i-];
que[f=b=]=;
for(int i=;i<=n;i++)
{
while(b-f>=&&S(que[f],que[f+])<K(i)) f++;
dp[i]=dp[que[f]]+(c1(i)-c2(que[f]))*(c1(i)-c2(que[f]));
while(b-f>=&&S(que[b-],i)<S(que[b],que[b-])) b--; que[++b]=i;
}
printf("%lld",dp[n]);
return ;
}

解题:HNOI 2008 玩具装箱的更多相关文章

  1. [HNOI 2008]玩具装箱

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  2. [bzoj 1010][HNOI 2008]玩具装箱

    传送门 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号 ...

  3. BZOJ 1010 (HNOI 2008) 玩具装箱

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Submit: 12665 Solved: 5540 [Submit][S ...

  4. 玩具装箱&土地购买

    今天一天8h 写了两道斜率优化的题(别问我效率为什么这么低 代码bug太多了) 关键是思考的不周全 估计是写的题少手生 以后就会熟练起来了吧. 这道题显然有一个n^2的dp方程 设f[i]表示前i件物 ...

  5. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  6. WIKIOI 1319 玩具装箱

    1319 玩具装箱 题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  8. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  9. C++之路进阶——codevs1319(玩具装箱)

    1319 玩具装箱  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description P教授要去看奥运,但是他舍不下他的玩具,于是 ...

随机推荐

  1. ffmpeg 踩坑实录 近期使用总结(三)

    一.背景介绍 将ffmpeg运用到项目上已经有一段时间了,趁现在有空赶紧记下来. 二.技术点总结    2.1 实现方式 项目里面主要运用的形式是,在java端,调用操作系统的方法,并执行切片命令. ...

  2. 获取安卓app的appPackage和appActivity

    1.需要配置好android的开发环境后,打开cmd命令窗口 2.在命令窗口中输入,adb logcat>D:/log.log,抓取日志 3.运行启动app 4.查看日志log 5.搜索日志的关 ...

  3. cmake-index-3.11.4机翻

    index next | CMake » git-stage git-master latest release 3.13 3.12 3.11.4 3.10 3.9 3.8 3.7 3.6 3.5 3 ...

  4. LVM缩小根分区

    逻辑卷不是根分区都可以在线扩容和缩小 根分区是可以在线扩容,但不可以在线缩小 Linux系统进入救援模式 依次选择: 欢迎界面 ---------- Rescue installed system C ...

  5. python sys.argv是什么?

    1.sys.argv 是获取运行python文件的时候命令行参数,且以list形式存储参数 2.sys.argv[0] 代表当前module的名字 下面的代码文件是a.py,当我不用IDE工具,只用命 ...

  6. react native基础与入门

    react native基础与入门 一.react native 的优点 1.跨平台(一才两用) 2.低投入高回报 (开发成本低.代码复用率高) 3.性能高:拥有独立的js渲染引擎,比传统的h5+ w ...

  7. tensorboard入门

    Tensorboard tensorboard用以图形化展示我们的代码结构和图形化训练误差等,辅助优化程序 tensorboard实际上是tensorflow机器学习框架下的一个工具,需要先安装ten ...

  8. MOOK学习

    课程选择及其理由 课程:c++程序设计 教师:魏英 学校:西北工业大学 总共:48讲 选择理由:我其实之前找了好几个,但由于小白,思考了下(迷茫,感觉好像都不错),然后看了一下大家都选择了西北工业大学 ...

  9. purcell的emacs配置中的自动补全功能开启

    标记一下,原文参看purcell的emacs配置中的自动补全功能开启 修改init-auto-complete.el文件 ;;(setq-default ac-expand-on-auto-compl ...

  10. 3dContactPointAnnotationTool开发日志(三一)

      在玩的时候遇到了一个python的问题: Traceback (most recent call last): File ".\convert.py", line 13, in ...