题目描述

给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ 、$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值。

$n,m\le 10^5$


题解

后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

两个前缀的最长公共后缀,在正串后缀自动机上体现为pre树上两点LCA的深度。

考虑统计pre树上一个点的贡献:对于两个前缀 $x$ 、$y$ ,它能够影响的询问左端点小于等于 $x$ ,右端点大于等于 $y$ 。因此影响最大化的前缀对就是排序后相邻的两个,每次只需要考虑这些前缀对。

那么我们考虑两个子树合并的过程,使用STL-set维护前驱后继成为贡献。这个过程可以启发式合并,把小的合并到大的中。

剩下的就是对于询问 $[l,r]$ ,询问前缀对中第一个 $\ge l$ ,第二个 $\le r$ 的最大值。离线+扫描线+树状数组维护前缀最小值即可。

时间复杂度瓶颈在于启发式合并STL-set,为 $O(n\log^2n)$ 。

#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
using namespace std;
struct data
{
int x , y , z;
data() {}
data(int a , int b , int c) {x = a , y = b , z = c;}
bool operator<(const data &a)const {return x < a.x;}
}a[N * 20] , q[N];
set<int> s[N];
int pre[N] , c[N][2] , dis[N] , val[N] , last = 1 , tot = 1 , head[N] , to[N] , next[N] , cnt , bl[N] , ta , f[N] , n , ans[N];
char str[N];
void insert(int k , int ch)
{
int p = last , np = last = ++tot;
dis[np] = dis[p] + 1 , s[np].insert(k);
while(p && !c[p][ch]) c[p][ch] = np , p = pre[p];
if(!p) pre[np] = 1;
else
{
int q = c[p][ch];
if(dis[q] == dis[p] + 1) pre[np] = q;
else
{
int nq = ++tot;
memcpy(c[nq] , c[q] , sizeof(c[q]));
dis[nq] = dis[p] + 1 , pre[nq] = pre[q] , pre[np] = pre[q] = nq;
while(p && c[p][ch] == q) c[p][ch] = nq , p = pre[p];
}
}
}
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
set<int>::iterator j , k;
for(i = head[x] ; i ; i = next[i])
{
dfs(to[i]);
if(s[bl[x]].size() > s[bl[to[i]]].size())
{
for(j = s[bl[to[i]]].begin() ; j != s[bl[to[i]]].end() ; j ++ )
{
k = s[bl[x]].upper_bound(*j);
if(k != s[bl[x]].end()) a[++ta] = data(*j , *k , dis[x]);
if(k != s[bl[x]].begin()) a[++ta] = data(*--k , *j , dis[x]);
s[bl[x]].insert(*j);
}
}
else
{
for(j = s[bl[x]].begin() ; j != s[bl[x]].end() ; j ++ )
{
k = s[bl[to[i]]].upper_bound(*j);
if(k != s[bl[to[i]]].end()) a[++ta] = data(*j , *k , dis[x]);
if(k != s[bl[to[i]]].begin()) a[++ta] = data(*--k , *j , dis[x]);
s[bl[to[i]]].insert(*j);
}
bl[x] = bl[to[i]];
}
}
}
inline void fix(int x , int a)
{
int i;
for(i = x ; i <= n ; i += i & -i) f[i] = max(f[i] , a);
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans = max(ans , f[i]);
return ans;
}
int main()
{
int m , i , p;
scanf("%d%d%s" , &n , &m , str + 1);
for(i = 1 ; i <= n ; i ++ ) insert(i , str[i] - '0');
for(i = 2 ; i <= tot ; i ++ ) add(pre[i] , i);
for(i = 1 ; i <= tot ; i ++ ) bl[i] = i;
dfs(1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &q[i].x , &q[i].y) , q[i].z = i;
sort(a + 1 , a + ta + 1) , sort(q + 1 , q + m + 1);
for(p = ta , i = m ; i ; i -- )
{
while(p && a[p].x >= q[i].x) fix(a[p].y , a[p].z) , p -- ;
ans[q[i].z] = query(q[i].y);
}
for(i = 1 ; i <= m ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}

【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组的更多相关文章

  1. LOJ6041. 「雅礼集训 2017 Day7」事情的相似度 [后缀树,LCT]

    LOJ 思路 建出反串的后缀树,发现询问就是问一个区间的点的\(lca\)的深度最大值. 一种做法是dfs的时候从下往上合并\(endpos\)集合,发现插入一个点的时候只需要把与前驱后继的贡献算进去 ...

  2. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  3. 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度

    Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...

  4. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  5. 【LOJ6041】「雅礼集训 2017 Day7」事情的相似度(用LCT维护SAM的parent树)

    点此看题面 大致题意: 给你一个\(01\)串,每次询问前缀编号在一段区间内的两个前缀的最长公共后缀的长度. 离线存储询问 考虑将询问离线,按右端点大小用邻接表存下来(直接排序当然也可以啦). 这样的 ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  7. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  8. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

  9. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...

随机推荐

  1. PostgreSQL通过mysql_fdw访问MySQL数据库

    Mysql与PostgreSQL的安装过程省略. 为简便起见,把MySQL和PostgreSQL都安装在一个机器上,然后在此机器上(准确地说是在PostgreSQL运行的机器上)安装mysql_fdw ...

  2. NIS - 深入了解如何搭建NIS环境

    第一篇[NIS]深入了解NIS 1     环境准备 操作系统:CentOS7.2 服务端安装如下软件: 软件名称 功能 ypserv NIS Server端的服务进程 rpcbind 提供RPC服务 ...

  3. 【BZOJ4566】[HAOI2016]找相同字符

    [BZOJ4566][HAOI2016]找相同字符 题面 给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数.两个方案不同当且仅当这两个子串中有一个位置不同. 其中\(1\le ...

  4. php编程知识点2018

    一 .PHP基础部分 1.PHP语言的一大优势是跨平台,什么是跨平台? PHP的运行环境最优搭配为Apache+MySQL+PHP,此运行环境可以在不同操作系统(例如windows.Linux等)上配 ...

  5. angular 缓存模板 ng-template $templateCache

    由于浏览器加载html模板是异步加载的,如果加载大量的模板会拖慢网站的速度,这里有一个技巧,就是先缓存模板. 使用angular缓存模板主要有三种方法: 方法一:通过script标签引入 <sc ...

  6. 【MySQL数据库权限】RDS for MySQL创建高权限账号

    原文转自:https://help.aliyun.com/document_detail/26130.html?spm=5176.2020520104.201.1.580be8abjlGorJ 为满足 ...

  7. appium+python自动化☞环境搭建

    前言:appium可以说是做app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本语言也是支持java和Python.略懂Python,所以接下来的教程是 appium+pyt ...

  8. 423. Valid Parentheses【LintCode java】

    Description Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine ...

  9. 【C#】人脸识别 视频数据转图片数据

    使用虹软人脸识别的开发过程中遇到了转换的问题 因为不会用C#直接打开摄像头,就只能用第三方dll.一开始用Aforge,后来发现有个问题,关闭摄像头老是陷入等待,所以抛弃了.前一阵子开始用封装了Ope ...

  10. 【Python入门总结】

    用了两周时间将python的基本语法和模块过了一遍,alex的视频也简单看了下;并且在项目中直接上了python解析语义的实现,初步感觉到了python语言的魅力.下一步,会按照廖雪峰的python学 ...