OCR技术浅探:Python示例(5)
文件说明:
1. image.py——图像处理函数,主要是特征提取;
2. model_training.py——训练CNN单字识别模型(需要较高性能的服务器,最好有GPU加速,否则真是慢得要死);
3. ocr.py——识别函数,包括单字分割、前面训练好的模型进行单字识别、动态规划提升效果;
4. main.py——主文件,用来调用1、3两个文件。
5、模型中包含的字.txt(UTF-8编码);
文件1:image.py
# -*- coding:utf-8 -*- import numpy as np
from scipy import misc,ndimage
from scipy.stats import gaussian_kde as kde
from tqdm import * def myread(filename): #读取图像,放大两倍,做平方变换
print u'读取图片中...'
pic = misc.imread(filename, flatten = True)
pic = ndimage.zoom(pic, 2)
pic = pic**2
pic = ((pic-pic.min())/(pic.max()-pic.min())*255).round()
print u'读取完成.'
return pic def decompose(pic): #核密度聚类,给出极大值、极小值点、背景颜色、聚类图层
print u'图层聚类分解中...'
d0 = kde(pic.reshape(-1), bw_method=0.2)(range(256)) #核密度估计
d = np.diff(d0)
d1 = np.where((d[:-1]<0)*(d[1:]>0))[0] #极小值
d1 = [0]+list(d1)+[256]
d2 = np.where((d[:-1]>0)*(d[1:]<0))[0] #极大值
if d1[1] < d2[0]:
d2 = [0]+list(d2)
if d1[len(d1)-2] > d2[len(d2)-1]:
d2 = list(d2)+[255]
dc = sum(map(lambda i: d2[i]*(pic >= d1[i])*(pic < d1[i+1]), range(len(d2))))
print u'分解完成. 共%s个图层'%len(d2)
return dc def erosion_test(dc): #抗腐蚀能力测试
print u'抗腐蚀能力测试中...'
layers = []
#bg = np.argmax(np.bincount(dc.reshape(-1)))
#d = [i for i in np.unique(dc) if i != bg]
d = np.unique(dc)
for k in d:
f = dc==k
label_im, nb_labels = ndimage.label(f, structure=np.ones((3,3))) #划分连通区域
ff = ndimage.binary_erosion(f) #腐蚀操作
def test_one(i):
index = label_im==i
if (1.0*ff[index].sum()/f[index].sum() > 0.9) or (1.0*ff[index].sum()/f[index].sum() < 0.1):
f[index] = False
ff = map(test_one, trange(1, nb_labels+1))
layers.append(f)
print u'抗腐蚀能力检测完毕.'
return layers def pooling(layers): #以模仿池化的形式整合特征
print u'整合分解的特征中...'
result = sum(layers)
label_im, nb_labels = ndimage.label(result, structure=np.ones((3,3)))
def pool_one(i):
index = label_im==i
k = np.argmax([1.0*layers[j][index].sum()/result[index].sum() for j in range(len(layers))])
result[index] = layers[k][index]
t = map(pool_one, trange(1, nb_labels+1))
print u'特征整合成功.'
return result def post_do(pic):
label_im, nb_labels = ndimage.label(pic, structure=np.ones((3,3)))
print u'图像的后期去噪中...'
def post_do_one(i):
index = label_im==i
index2 = ndimage.find_objects(index)[0]
ss = 1.0 * len(pic.reshape(-1))/len(pic[index2].reshape(-1))**2
#先判断是否低/高密度区,然后再判断是否孤立区。
if (index.sum()*ss < 16) or ((1+len(pic[index2].reshape(-1))-index.sum())*ss < 16):
pic[index] = False
else:
a,b,c,d = index2[0].start, index2[0].stop, index2[1].start, index2[1].stop
index3 = (slice(max(0, 2*a-b),min(pic.shape[0], 2*b-a)), slice(max(0, 2*c-d),min(pic.shape[1], 2*d-c)))
if (pic[index3].sum() == index.sum()) and (1.0*index.sum()/(b-a)/(d-c) > 0.75):
pic[index2] = False
t = map(post_do_one, trange(1, nb_labels+1))
print u'后期去噪完成.'
return pic def areas(pic): #圈出候选区域
print u'正在生成候选区域...'
pic_ = pic.copy()
label_im, nb_labels = ndimage.label(pic_, structure=np.ones((3,3)))
def areas_one(i):
index = label_im==i
index2 = ndimage.find_objects(index)[0]
pic_[index2] = True
t = map(areas_one, trange(1, nb_labels+1))
return pic_ #定义距离函数,返回值是距离和方向
#注意distance(o1, o2)与distance(o2, o1)的结果是不一致的
def distance(o1, o2):
delta = np.array(o2[0])-np.array(o1[0])
d = np.abs(delta)-np.array([(o1[1]+o2[1])/2.0, (o1[2]+o2[2])/2.0])
d = np.sum(((d >= 0)*d)**2)
theta = np.angle(delta[0]+delta[1]*1j)
k = 1
if np.abs(theta) <= np.pi/4:
k = 4
elif np.abs(theta) >= np.pi*3/4:
k = 2
elif np.pi/4 < theta < np.pi*3/4:
k = 1
else:
k = 3
return d, k def integrate(pic, k=0): #k=0是全向膨胀,k=1仅仅水平膨胀
label_im, nb_labels = ndimage.label(pic, structure=np.ones((3,3)))
def integrate_one(i):
index = label_im==i
index2 = ndimage.find_objects(index)[0]
a,b,c,d = index2[0].start, index2[0].stop, index2[1].start, index2[1].stop
cc = ((a+b)/2.0,(c+d)/2.0)
return (cc, b-a, d-c)
print u'正在确定区域属性...'
A = map(integrate_one, trange(1, nb_labels+1))
print u'区域属性已经确定,正在整合邻近区域...'
aa,bb = pic.shape
pic_ = pic.copy()
def areas_one(i):
dist = [distance(A[i-1], A[j-1]) for j in range(1, nb_labels+1) if i != j]
dist = np.array(dist)
ext = dist[np.argsort(dist[:,0])[0]] #通过排序找最小,得到最邻近区域
if ext[0] <= (min(A[i-1][1],A[i-1][2])/4)**2:
ext = int(ext[1])
index = label_im==i
index2 = ndimage.find_objects(index)[0]
a,b,c,d = index2[0].start, index2[0].stop, index2[1].start, index2[1].stop
if ext == 1: #根据方向来膨胀
pic_[a:b, c:min(d+(d-c)/4,bb)] = True
elif ext == 3:
pic_[a:b, max(c-(d-c)/4,0):d] = True
elif ext == 4 and k == 0:
pic_[a:min(b+(b-a)/6,aa), c:d] = True #基于横向排版假设,横向膨胀要大于竖向膨胀
elif k == 0:
pic_[max(a-(b-a)/6,0):b, c:d] = True
t = map(areas_one, trange(1, nb_labels+1))
print u'整合完成.'
return pic_ def cut_blank(pic): #切除图片周围的白边,返回范围
try:
q = pic.sum(axis=1)
ii,jj = np.where(q!= 0)[0][[0,-1]]
xi = (ii, jj+1)
q = pic.sum(axis=0)
ii,jj = np.where(q!= 0)[0][[0,-1]]
yi = (ii, jj+1)
return [xi, yi]
except:
return [(0,1),(0,1)] def trim(pic, pic_, prange=5): #剪除白边,删除太小的区域
label_im, nb_labels = ndimage.label(pic_, structure=np.ones((3,3)))
def trim_one(i):
index = label_im==i
index2 = ndimage.find_objects(index)[0]
box = (pic*index)[index2]
[(a1,b1), (c1,d1)] = cut_blank(box)
pic_[index] = False
if (b1-a1 < prange) or (d1-c1 < prange) or ((b1-a1)*(d1-c1) < prange**2): #删除小区域
pass
else: #恢复剪除白边后的区域
a,b,c,d = index2[0].start, index2[0].stop, index2[1].start, index2[1].stop
pic_[a+a1:a+b1,c+c1:c+d1] = True
t = map(trim_one, trange(1, nb_labels+1))
return pic_ def bound(m):
frange = (slice(m.shape[0]-1), slice(m.shape[1]-1))
f0 = np.abs(np.diff(m, axis=0))
f1 = np.abs(np.diff(m, axis=1))
f2 = np.abs(m[frange]-m[1:,1:])
f3 = f0[frange]+f1[frange]+f2[frange] != 0
return f3 def trim_bound(pic, pic_): #剪除白边,删除太小的区域
pic_ = pic_.copy()
label_im, nb_labels = ndimage.label(pic_, structure=np.ones((3,3)))
def trim_one(i):
index = label_im==i
index2 = ndimage.find_objects(index)[0]
box = pic[index2]
if 1.0 * bound(box).sum()/box.sum() < 0.15:
pic_[index] = False
t = map(trim_one, trange(1, nb_labels+1))
return pic_
文件2:model_training.py
# -*- coding:utf-8 -*- import numpy as np
from PIL import Image, ImageFont, ImageDraw
import pandas as pd
import glob #包含的汉字列表(太长,仅仅截取了一部分)
hanzi = u'0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz的一是不人有了在你我个大中要这为上生时会以就子到来可能和自们年多发心好用家出关长他成天对也小后下学都点国过地行信方得最说二业分作如看女于面注别经动公开现而美么还事' #生成文字矩阵
def gen_img(text, size=(48,48), fontname='simhei.ttf', fontsize=48):
im = Image.new('', size, 1)
dr = ImageDraw.Draw(im)
font = ImageFont.truetype(fontname, fontsize)
dr.text((0, 0), text, font=font)
return (((np.array(im.getdata()).reshape(size)==0)+(np.random.random(size)<0.05)) != 0).astype(float) #生成训练样本
data = pd.DataFrame()
fonts = glob.glob('./*.[tT][tT]*')
for fontname in fonts:
print fontname
for i in range(-2,3):
m = pd.DataFrame(pd.Series(list(hanzi)).apply(lambda s:[gen_img(s, fontname=fontname, fontsize=48+i)]))
m['label'] = range(3062)
data = data.append(m, ignore_index=True)
m = pd.DataFrame(pd.Series(list(hanzi)).apply(lambda s:[gen_img(s, fontname=fontname, fontsize=48+i)]))
m['label'] = range(3062)
data = data.append(m, ignore_index=True) x = np.array(list(data[0])).astype(float)
np.save('x', x) #保存训练数据 dic=dict(zip(range(3062),list(hanzi))) #构建字表 from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils batch_size = 1024
nb_classes = 3062
nb_epoch = 30 img_rows, img_cols = 48, 48
# number of convolutional filters to use
nb_filters = 64
# size of pooling area for max pooling
nb_pool = 2
# convolution kernel size
nb_conv = 4 x = np.load('x.npy')
y = np_utils.to_categorical(range(3062)*45*5*2, nb_classes)
weight = ((3062-np.arange(3062))/3062.0+1)**3
weight = dict(zip(range(3063),weight/weight.mean())) #调整权重,高频字优先 model = Sequential() model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid',
input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25)) model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5)) model.add(Dense(nb_classes))
model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']) history = model.fit(x, y,
batch_size=batch_size, nb_epoch=nb_epoch,
class_weight=weight) score = model.evaluate(x,y)
print('Test score:', score[0])
print('Test accuracy:', score[1]) model.save_weights('model.model')
文件3:ocr.py
# -*- coding:utf-8 -*- import numpy as np
from scipy import misc
from images import cut_blank #包含的汉字列表(太长了,仅截取了一部分)
hanzi = u'0123456789AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz的一是不人有了在你我个大中要这为上生时会以就子到来可能和自们年多发心好用家出关长他成天对也小后下学都点国过地行信方得最说二业分作如看女于面注别经动公开现而美么还事' dic=dict(zip(range(3062),list(hanzi))) #构建字表 from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils batch_size = 128
nb_classes = 3062
img_rows, img_cols = 48, 48
nb_filters = 64
nb_pool = 2
nb_conv = 4 model = Sequential() model.add(Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='valid',
input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25)) model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25)) model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5)) model.add(Dense(nb_classes))
model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']) model.load_weights('ocr.model') import pandas as pd
zy = pd.read_csv('zhuanyi.csv', encoding='utf-8', header=None)
zy.set_index(0, inplace=True)
zy = zy[1] def viterbi(nodes):
paths = nodes[0]
for l in range(1,len(nodes)):
paths_ = paths.copy()
paths = {}
for i in nodes[l].keys():
nows = {}
for j in paths_.keys():
try:
nows[j+i]= paths_[j]*nodes[l][i]*zy[j[-1]+i]
except:
nows[j+i]= paths_[j]*nodes[l][i]*zy[j[-1]+'XX']
k = np.argmax(nows.values())
paths[nows.keys()[k]] = nows.values()[k]
return paths.keys()[np.argmax(paths.values())] # mode为direact和search
#前者直接给出识别结果,后者给出3个字及其概率(用来动态规划)
def ocr_one(m, mode='direact'):
m = m[[slice(*i) for i in cut_blank(m)]]
if m.shape[0] >= m.shape[1]:
p = np.zeros((m.shape[0],m.shape[0]))
p[:,:m.shape[1]] = m
else:
p = np.zeros((m.shape[1],m.shape[1]))
x = (m.shape[1]-m.shape[0])/2
p[:m.shape[0],:] = m
m = misc.imresize(p,(46,46), interp='nearest') #这步和接下来几步,归一化图像为48x48
p = np.zeros((48, 48))
p[1:47,1:47] = m
m = p
m = 1.0 * m / m.max()
k = model.predict(np.array([[m]]), verbose=0)[0]
ks = k.argsort()
if mode == 'direact':
if k[ks[-1]] > 0.5:
return dic[ks[-1]]
else:
return ''
elif mode == 'search':
return {dic[ks[-1]]:k[ks[-1]],dic[ks[-2]]:k[ks[-2]],dic[ks[-3]]:k[ks[-3]]} '''
#直接调用Tesseract
import os
def ocr_one(m):
misc.imsave('tmp.png', m)
os.system('tesseract tmp.png tmp -l chi_sim -psm 10')
s = open('tmp.txt').read()
os.system('rm tmp.txt \n rm tmp.png')
return s.strip()
''' def cut_line(pl): #mode为direact或viterbi
pl = pl[[slice(*i) for i in cut_blank(pl)]]
pl0 = pl.sum(axis=0)
pl0 = np.where(pl0==0)[0]
if len(pl0) > 0:
pl1=[pl0[0]]
t=[pl0[0]]
for i in pl0[1:]:
if i-pl1[-1] == 1:
t.append(i)
pl1[-1]=i
else:
pl1[-1] = sum(t)/len(t)
t = [i]
pl1.append(i)
pl1[-1] = sum(t)/len(t)
pl1 = [0] + pl1 + [pl.shape[1]-1]
cut_position = [1.0*(pl1[i+1]-pl1[i-1])/pl.shape[0] > 1.2 for i in range(1,len(pl1)-1)]
cut_position=[pl1[1:-1][i] for i in range(len(pl1)-2) if cut_position[i]] #简单的切割算法
cut_position = [0] + cut_position + [pl.shape[1]-1]
else:
cut_position = [0, pl.shape[1]-1]
l = len(cut_position)
for i in range(1, l):
j = int(round(1.0*(cut_position[i]-cut_position[i-1])/pl.shape[0]))
ab = (cut_position[i]-cut_position[i-1])/max(j,1)
cut_position = cut_position + [k*ab+cut_position[i-1] for k in range(1, j)]
cut_position.sort()
return pl, cut_position def ocr_line(pl, mode='viterbi'): #mode为direact或viterbi
pl, cut_position = cut_line(pl)
if mode == 'viterbi':
text = map(lambda i: ocr_one(pl[:,cut_position[i]:cut_position[i+1]+1], mode='search'), range(len(cut_position)-1))
return viterbi(text)
elif mode == 'direact':
text = map(lambda i: ocr_one(pl[:,cut_position[i]:cut_position[i+1]+1]), range(len(cut_position)-1))
''.join(text)
文件4:main.py
# -*- coding:utf-8 -*- from scipy import ndimage
print u'加载图片工具中...'
from images import *
print u'加载OCR模型中...'
from ocr import *
print u'加载完毕.' if __name__ == '__main__':
filename = '../cn.jpg'
p = myread(filename)
dc = decompose(p)
layers = erosion_test(dc)
result = pooling(layers)
result = post_do(result)
result_ = areas(result)
result_ = integrate(result_, 1)
result_ = trim(result, result_)
result_ = integrate(result_, 1)
result_ = trim(result, result_, 10)
result_ = trim_bound(result, result_)
label_im, nb_labels = ndimage.label(result_, structure=np.ones((3,3)))
for i in range(1, nb_labels+1):
index = label_im==i
index2 = ndimage.find_objects(index)[0]
print ocr_line(result[index2])
OCR技术浅探:Python示例(5)的更多相关文章
- OCR技术浅探(转)
网址:https://spaces.ac.cn/archives/3785 OCR技术浅探 作为OCR系统的第一步,特征提取是希望找出图像中候选的文字区域特征,以便我们在第二步进行文字定位和第三步进行 ...
- OCR技术浅探:基于深度学习和语言模型的印刷文字OCR系统
作者: 苏剑林 系列博文: 科学空间 OCR技术浅探:1. 全文简述 OCR技术浅探:2. 背景与假设 OCR技术浅探:3. 特征提取(1) OCR技术浅探:3. 特征提取(2) OCR技术浅探:4. ...
- OCR技术浅探:特征提取(1)
研究背景 关于光学字符识别(Optical Character Recognition, 下面都简称OCR),是指将图像上的文字转化为计算机可编辑的文字内容,众多的研究人员对相关的技术研究已久,也有不 ...
- OCR技术浅探: 语言模型(4)
由于图像质量等原因,性能再好的识别模型,都会有识别错误的可能性,为了减少识别错误率,可以将识别问题跟统计语言模型结合起来,通过动态规划的方法给出最优的识别结果.这是改进OCR识别效果的重要方法之一. ...
- OCR技术浅探: 语言模型和综合评估(4)
语言模型 由于图像质量等原因,性能再好的识别模型,都会有识别错误的可能性,为了减少识别错误率,可以将识别问题跟统计语言模型结合起来,通过动态规划的方法给出最优的识别结果.这是改进OCR识别效果的重要方 ...
- OCR技术浅探: 光学识别(3)
经过前面的文字定位和文本切割,我们已经能够找出图像中单个文字的区域,接下来可以建立相应的模型对单字进行识别. 模型选择 在模型方面,我们选择了深度学习中的卷积神经网络模型,通过多层卷积神经网络,构建了 ...
- OCR技术浅探 : 文字定位和文本切割(2)
文字定位 经过前面的特征提取,我们已经较好地提取了图像的文本特征,下面进行文字定位. 主要过程分两步: 1.邻近搜索,目的是圈出单行文字: 2.文本切割,目的是将单行文本切割为单字. 邻近搜索 我们可 ...
- 开发技术--浅谈Python函数
开发|浅谈Python函数 函数在实际使用中有很多不一样的小九九,我将从最基础的函数内容,延伸出函数的高级用法.此文非科普片~~ 前言 目前所有的文章思想格式都是:知识+情感. 知识:对于所有的知识点 ...
- 开发技术--浅谈python数据类型
开发|浅谈python数据类型 在回顾Python基础的时候,遇到最大的问题就是内容很多,而我的目的是回顾自己之前学习的内容,进行相应的总结,所以我就不玩基础了,很多在我实际生活中使用的东西,我会在文 ...
随机推荐
- 用 webpack 构建 node 后端代码,使其支持 js 新特性并实现热重载
https://zhuanlan.zhihu.com/p/20782320?utm_source=tuicool&utm_medium=referral
- [Scikit-learn] *Dynamic Bayesian Network - Partical Filter
涉及的一些知识: 机器人的自我定位 Sequential Importance Sampling Ref: http://scipy-cookbook.readthedocs.io/items/Par ...
- testNG框架提示:Cannot find class in classpath: NewTest
selenium+Java的testNG运行时,报如下错误: org.testng.TestNGException: Cannot find class in classpath: NewTest a ...
- GIS-002-gdal2srtmtiles使用注意事项
本次安装和配置过程重点参考了: 1.http://blog.csdn.net/wjkwjk/article/details/52560236 2.http://blog.csdn.net/wjkwjk ...
- m4a文件在iOS上的流媒体播放
Date: 2016-03-23 Title: m4a文件在iOS上的流媒体播放 Tags: m4a, mp4, iOS, Android URL: m4a-streaming-play-on-mob ...
- oracle 与mysql 的当前时间比较
select p.id,p.order_Num,p.image_url,p.url,p.image_topic, p.is_download, p.big_image_url, p.begin_tim ...
- 利用html实现类似于word自动生成的目录的效果
在word中的自动生成目录当中,我们会看到是这样的目录结构: 嗯,自动生成固然是简单,但是在html当中,却没有一个合适的标签来去做.今天后台导出PDF的时候告诉我,他需要用html做一个这样的结构, ...
- [020]Sencha Ext JS 6.0使用教程2
本节主要以典型例子介绍如何用Sencha Ext JS6.0进行项目开发 入门阶段总是比较难的,掌握了基本操作步骤,使用方法,架构思维,开发起来还是满顺利,开心的,自己又能掌握一门新技术,又能进步,主 ...
- Objective-c官方文档翻译 类的定义
类是对象的蓝图. 一个类是描述了对象的行为和属性.例如NSString的一个实例.他的类提供了各种的方法来转化和表示他的内部字符的表示. 每个类的实例都包含了这个类的属性和行为.例如每个NSSt ...
- 数据一致性和io类型
版权声明:本文由高剑林原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/106 来源:腾云阁 https://www.qclo ...