[LOJ535]「LibreOJ Round #6」花火
description
给你一个排列\(h_i\),你需要交换任意两个位置上的数使得交换后排列的逆序对数最少。
\(n \le 3\times 10^5\)
sol
首先可以发现,如果交换两个位置\(i,j(h_i>h_j)\),那么逆序对数的减小量就是满足\(i<k<j\)且\(h_j<h_k<h_i\)的\(k\)的数量乘\(2\)。这相当于一个二维数点的问题。
理性分析一下,枚举出来的\(i\)一定是前缀最大值,\(j\)一定是后缀最小值,不然这个矩形内包含的点的数量一定不是最多的。
那么我们就构造出了一个满足前缀最大的集合\(U\)和一个满足后缀最小的集合\(D\),现在要从两个集合中各选出一个构成一个矩形,最大化其中的点数。注意这两个集合中的\(h_i\)都是单调递增的。
我们考虑每一个点\((x,h_x)\)会出现在哪些矩形中。
在\(U\)中二分找到最小的\(l\)满足\(h_l>h_x\),在\(D\)中二分找到最小的\(r\)满足\(h_r<h_x\),那么要使点\((x,h_x)\)被包含在\((i,j)\)构成的矩形内部的条件就是:\(i\in[l,x-1],j\in[x+1,r]\)。
把点转化为矩阵,问题变成求矩形覆盖的最大值,线段树维护扫描线即可。
复杂度\(O(n\log n)\)。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 3e5+5;
int n,h[N],s1[N],t1,s2[N],t2,ins[N],cnt,mx[N<<2],tag[N<<2],c[N],ans;
long long sum;
struct node{
int y,x1,x2,op;
bool operator < (const node &b) const{
if (y==b.y) return op<b.op;
return y<b.y;
}
}p[N<<1];
int binary1(int x){
int l=1,r=t1,res=0;
while (l<=r){
int mid=l+r>>1;
if (h[s1[mid]]>h[x]) res=mid,r=mid-1;
else l=mid+1;
}
return s1[res];
}
int binary2(int x){
int l=1,r=t2,res=0;
while (l<=r){
int mid=l+r>>1;
if (h[s2[mid]]<h[x]) res=mid,r=mid-1;
else l=mid+1;
}
return s2[res];
}
void modify(int x,int l,int r,int ql,int qr,int v){
if (l>=ql&&r<=qr) {mx[x]+=v;tag[x]+=v;return;}
int mid=l+r>>1;
if (ql<=mid) modify(x<<1,l,mid,ql,qr,v);
if (qr>mid) modify(x<<1|1,mid+1,r,ql,qr,v);
mx[x]=max(mx[x<<1],mx[x<<1|1])+tag[x];
}
void mdf(int k){while(k<=n)++c[k],k+=k&-k;}
int qry(int k){int s=0;while(k)s+=c[k],k-=k&-k;return s;}
int main(){
n=gi();
for (int i=1;i<=n;++i) h[i]=gi();
for (int i=1;i<=n;++i) if (i==1||h[i]>h[s1[t1]]) s1[++t1]=i,ins[i]=1;
for (int i=n;i>=1;--i) if (i==n||h[i]<h[s2[t2]]) s2[++t2]=i,ins[i]=1;
for (int i=1;i<=n;++i){
if (ins[i]) continue;
int l=binary1(i),r=binary2(i);
if (l<i&&i<r){
p[++cnt]=(node){i+1,l,i-1,1};
p[++cnt]=(node){r+1,l,i-1,-1};
}
}
sort(p+1,p+cnt+1);
for (int i=1;i<=cnt;++i){
modify(1,1,n,p[i].x1,p[i].x2,p[i].op);
if (p[i].y!=p[i+1].y) ans=max(ans,mx[1]);
}
for (int i=n;i;--i) sum+=qry(h[i]-1),mdf(h[i]);
printf("%lld\n",sum-2*ans);
return 0;
}
[LOJ535]「LibreOJ Round #6」花火的更多相关文章
- loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分
$ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...
- 「LibreOJ Round #6」花火
转化思维的好题! 链接:here 大致题意: 有$ n$个数字,你每次可以交换相邻两个,还有一次交换任意两个元素的机会,求最少的交换次数使得这些数字升序排序(原数列两两不同) $ solotion:$ ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
随机推荐
- bat笔记
背景介绍 现入职的公司包含发送EDM的项目,每天都有各种题型邮件需要发送,但是由于各种原因,发送EDM程序的服务器老是被网管各种重启 :) 作为负责人,对这事很恼火,隔几天就被投诉,怎么又没收到考勤邮 ...
- 文件下载—SSM框架文件下载
1.准备上传下载的api组件 <dependency> <groupId>commons-io</groupId> <artifactId>common ...
- EditPlus 4.3.2487 中文版已经发布(11月12日更新)
新的版本修复了粘贴多重选择文本的问题,以及增加了横向扩展列选模式选择范围的快捷键(Ctrl+Alt+→/←).
- [one day one question] iphone6 plus h5页面滑动莫名卡
问题描述: iphone6 plus h5页面滑动莫名卡,这怎么破? 解决方案: 比较奇葩的问题,在找不到任何问题的情况下,可以考虑在下发现的解决方案,html,body未添加height: 100% ...
- Python笔记 #04# Methods
源:DataCamp datacamp 的 DAILY PRACTICE + 日常收集. Methods String Methods List Methods 缺一 Methods You can ...
- LCD1602小程序
1显示数据 typedef struct { unsigned long int mL_data; unsigned long int L_data; unsigned long int M3_dat ...
- UOJ #131 【NOI2015】 品酒大会
题目链接:品酒大会 学了后缀自动机之后再来写这道题就轻松多了…… 首先,题面中的两杯酒\(r\)相似就是这两个后缀的最长公共前缀大于等于\(r\).把串翻转过来之后就变成了两个前缀的最长公共后缀……然 ...
- 创建一个 SQLite 数据库
首先,我们学习如何创建一个SQLite 数据库.如果想要在data/example.sqlite 这个路径中创建一个示例数据库,就必须确保该路径存在.如果该路径不存在,就必须先创建路径:if (!di ...
- Spring MVC配置静态资源和资源包
Spring MVC配置静态资源和资源包 本例映射:css目录: pom.xml <properties> <spring.version>4.3.5.RELEASE</ ...
- JSP Cookies 处理
JSP Cookies 处理 Cookies是存储在客户机的文本文件,它们保存了大量轨迹信息.在servlet技术基础上,JSP显然能够提供对HTTP cookies的支持. 通常有三个步骤来识别回头 ...