递归--练习1--noi3089爬楼梯
递归--练习1--noi3089爬楼梯
一、心得
根据输入,是要写连续输入多个值的程序
二、题目
3089:爬楼梯
- 总时间限制:
- 1000ms
- 内存限制:
- 65536kB
- 描述
-
树老师爬楼梯,他可以每次走1级或者2级,输入楼梯的级数,求不同的走法数
例如:楼梯一共有3级,他可以每次都走一级,或者第一次走一级,第二次走两级
也可以第一次走两级,第二次走一级,一共3种方法。 - 输入
- 输入包含若干行,每行包含一个正整数N,代表楼梯级数,1 <= N <= 30
- 输出
- 不同的走法数,每一行输入对应一行输出
- 样例输入
-
5
8
10 - 样例输出
-
8
34
89
三、AC代码
//noi3089爬楼梯
/*
递推表达式
f(n)=f(n-1)+f(n-2)
f(1)=1;
f(2)=2
*/
/*
根据输入,是要写连续输入多个值的程序
*/
#include <iostream>
#include <cstdio>
using namespace std;
int f(int n){
if(n==) return ;
if(n==) return ;
else
return f(n-)+f(n-);
}
int main(){
int n;
while(scanf("%d",&n)!=EOF){
int ans=f(n);
cout<<ans<<endl;;
} return ;
}
递归--练习1--noi3089爬楼梯的更多相关文章
- Leetcode题目70.爬楼梯(动态规划+递归-简单)
题目描述: 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 ...
- lintcode: 爬楼梯
题目: 爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,中不同的方法 返回 3 解题: 动态规划题目,同时还是有顺序 ...
- 爬楼梯问题-斐波那契序列的应用.md
N 阶楼梯,一次可以爬1.2.3...n步,求爬楼梯的种类数 /** * 斐波那契序列 */ public class ClimbingStairs { // Sol 1: 递归 // 递归 公式:F ...
- c++(爬楼梯)
前两天上网的时候看到一个特别有意思的题目,在这里和朋友们分享一下: 有一个人准备开始爬楼梯,假设楼梯有n个,这个人只允许一次爬一个楼梯或者一次爬两个楼梯,请问有多少种爬法? 在揭晓答案之前,朋友们可以 ...
- climbing stairs(爬楼梯)(动态规划)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- [Swift]LeetCode70. 爬楼梯 | Climbing Stairs
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- Leetcode#70. Climbing Stairs(爬楼梯)
题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...
- leetcode-70.爬楼梯
leetcode-70.爬楼梯 Points 斐波那契 动态规划 题意 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给 ...
- 【leetcode70】【动态规划】 爬楼梯
(1 pass 一维动态规划) 爬楼梯(easy) 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数 ...
随机推荐
- 并查集+路径压缩(poj1988)
http://poj.org/problem?id=1988 Cube Stacking Time Limit: 2000MS Memory Limit: 30000K Total Submiss ...
- 【elasticsearch 依赖 urllib3 请问 是否 urllib3和阿里es、oss的对接出现异常】
During handling of the above exception, another exception occurred: Traceback (most recent call last ...
- talib 中文文档(七):Overlap Studies Functions
Overlap Studies Functions 重叠指标 BBANDS - Bollinger Bands 函数名:BBANDS 名称: 布林线指标 简介:其利用统计原理,求出股价的标准差及其信赖 ...
- centos LAMP第一部分-环境搭建 Linux软件删除方式,mysql安装,apache,PHP,apache和php结合,phpinfo页面,ldd命令 第十九节课
centos LAMP第一部分-环境搭建 Linux软件删除方式,mysql安装,apache,PHP,apache和php结合,phpinfo页面,ldd命令 第十九节课 打命令之后可以输入: e ...
- SQL Server 2012 AlwaysON 同步延迟时间
SELECT availability_mode_desc , role_desc , replica_server_name , last_redone_time , GETDATE() now , ...
- vue基础篇(一)
1.简介 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手 ...
- PAT 1147 Heaps[难]
1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...
- linux进程间通讯的几种方式的特点和优缺点
# 管道( pipe ):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用.进程的亲缘关系通常是指父子进程关系.# 有名管道 (named pipe) : 有名管道也是 ...
- BZOJ:3832: [Poi2014]Rally
题意: 给出$DAG$,询问删掉哪个点之后最长路径最短 思路: 我们令$f[x]$表示从最远的点到达它的距离,$g[x]$表示它能够到达最远的点的距离 那么对于$(x -> y)$一条边来说,它 ...
- hdu1700 Points on Cycle
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=1700 题目: Points on Cycle Time Limit: 1000/1000 MS ...