1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 4723  Solved: 2940
[Submit][Status][Discuss]

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT

 

Source

     
 
    一个容易想到的转移方程是f[i][j]表示当前学号长度为i,在状态j时的方案个数,它可以推出的状态就是->f[i+1][k],下一步可以选择的数字[0,9],根据失配指针寻找应该转移到的状态k就好了,就是AC自动机,只不过是单链的为了方便用kmp处理。显然所有的f[i+1][]状态都来自于
f[i][],于是想到利用转移矩阵A,实现 (f[i][0],f[i][1],,,f[i][m])*A=(f[i+1][0],f[i+1][1],,,,f[i+1][m]),矩阵A[i][j]表示f[i+1][j]+=A[i][j]*f[i][j].
 #include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-10
#define inf 0x3f3f3f3f LL N,M,K;
int f[];
char s[];
struct matrix{
LL len;
LL a[][];
matrix(){
memset(a,,sizeof(a));
}
matrix& operator*(matrix& tmp){
matrix ans;
ans.len=len;
for(int i=;i<=len;++i){
for(int j=;j<=len;++j){
for(int k=;k<=len;++k){
ans.a[i][k]+=a[i][j]*tmp.a[j][k];
ans.a[i][k]%=K;
}
}
}
return ans;
} }A,I;
matrix qpow(matrix X,int n){
matrix ans=I;
while(n){
if(n&) ans=ans*X;
X=X*X;
n>>=;
}
return ans;
}
void init(){
int i,j,k,len;
I.len=A.len=M;
for(i=;i<=M;++i)I.a[i][i]=;
len=strlen(s+);
f[]=;
f[]=;
for(i=;i<=len;++i){
j=f[i-];
while(j&&s[j]!=s[i-]) j=f[j];
f[i]=j+;
} for(i=;i<len;++i){
for(j=;j<;++j){
if(s[i+]-''==j){
A.a[i][i+]++;
}
else{
k=f[i+];
while(k&&s[k]-''!=j) k=f[k];
A.a[i][k]++;
}
}
}
A.a[len-][len]=; }
int main(){
int i,j,k;
scanf("%lld%lld%lld",&N,&M,&K);
scanf("%s",s+);
init();
matrix ans=qpow(A,N);
LL res=;
for(i=;i<=ans.len;++i){
res+=ans.a[][i];
res%=K;
}
cout<<res<<endl;
return ;
}

bzoj-1009-dp+kmp处理转移矩阵幂的更多相关文章

  1. bzoj 1009 DP 矩阵优化

    原来的DP: dp[i][j]表示长度为i的合法串,并且它的长度为j的后缀是给定串的长度为j的前缀. 转移: i==0 dp[0][0] = 1 dp[0][1~m-1] = 0 i>=1 dp ...

  2. bzoj 1009 DP+矩阵加速

    我们用DP来解决这个问题 W[I,J]表示准考证的第I位,和不吉利的数匹配到了第J位的方案数,这个状态的表示也可以看成 当前到第I位了,准考证的后J位是不吉利的数的前J位,的方案数 那么我们最后的an ...

  3. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  4. bzoj 3622 DP + 容斥

    LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...

  5. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

  6. BZOJ1009GT考试 DP + KMP + 矩陣快速冪

    @[DP, KMP, 矩陣快速冪] Description 阿申准备报名参加GT考试,准考证号为\(N\)位数\(X_1 X_2 .. X_n(0 <= X_i <= 9)\),他不希望准 ...

  7. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  8. BZOJ.1009.[HNOI2008]GT考试(KMP DP 矩阵快速幂)

    题目链接 设f[i][j]为当前是第i位考号.现在匹配到第j位(已有j-1位和A[]匹配)的方案数 因为假如当前匹配j位,如果选择的下一位与A[j+1]不同,那么新的匹配位数是fail[j]而不是0, ...

  9. BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)

    题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...

随机推荐

  1. Docker容器之Nginx

    一,pull一个Nginx镜像 docker pull nginx 二,Nginx镜像文件说明 配置文件 /etc/nginx/nginx.conf 网站根目录 /usr/share/nginx/ht ...

  2. Process Monitor分析某个应用行为

    1.打开Process Mointor 2.点击filter-->filter   在弹出的对话框中Architecture 下拉框,选择Process Name 填写要分析的应用程序名字. 点 ...

  3. 使用log4net做应用程序全局日志记录保存在数据库中

    几乎所有的大型应用都会有自己的用于跟踪调试的API.因为一旦程序被部署以后,就不太可能再利用专门的调试工具了.然而一个管理员可能需要有一套强大的日志系统来诊断和修复配置上的问题.经验表明,日志记录往往 ...

  4. php中函数preg_match或preg_match_all 第三个参数$match的解释

    理解自:http://www.cnblogs.com/vicenteforever/articles/1623137.html php手册中是这样解释的 matches 如果提供了参数matches, ...

  5. (1.2)DML增强功能-4大排名函数与top ties/tablesample

    关键字:sql server窗口函数.分析函数.四大窗口函数 1.row_number()  over( partition by column order by column) (1)测试数据 (2 ...

  6. centos 目录结构 快捷键 ls命令,alias别名,so:动态库 a:静态库,环境变量PATH,Ctrl+z 暂停命令,Ctrl+a 光标到行首,Ctrl+e 光标到行尾,Ctrl+u 删除光标前所有字符 Ctrl+r 搜索命 hash命令 Ctrl+左箭头/右箭头 cd命令 第三节课

    centos 目录结构 快捷键 ls命令,alias别名,so:动态库 a:静态库,环境变量PATH,Ctrl+z 暂停命令,Ctrl+a 光标到行首,Ctrl+e 光标到行尾,Ctrl+u 删除光标 ...

  7. [Err]1418 This function has none of DETERMINISTIC,NO SQL,or R

    -----------------------------------------------------------------------------------------------      ...

  8. 最长DNA重复序列长度,并输出该序列。 JAVA

    1:  最长DNA重复序列长度,并输出该序列. 例如  ATCGTAGATCG,它的最大长度为4,序列为 ATCG. package com.li.huawei; import java.util.S ...

  9. 安装memcached扩展 验证过了可行

    . 安装libmemached 复制代码 代码如下: wget https://launchpad.net/libmemcached/1.0/1.0.16/+download/libmemcached ...

  10. Linux proc 内存

    ps: USER      PID    %CPU %MEM   VSZ   RSS  TTY  STAT  START  TIME  COMMAND root          4238     0 ...