A context-aware personalized travel recommendation system based on geotagged social media data mining
文章简介:利用社交网站Flickr上照片的geotag信息将这些照片聚类发现城市里的旅游景点,通过各照片的拍照时间得到用户访问某景点时的时间上下文和天气上下文(利用时间和public API of Wunderground),将访问景点的上下文进行排序得到popular的上下文作为景点的上下文。在给用户作推荐时,首先得到用户当前的上下文或者要访问景点的上下文,利用上下文匹配出一些景点,然后在这些景点里头根据user-based collaborative filtering方法进行推荐,user-based collaborative filtering中用户对景点的评分使用用户访问某景点的次数。
The architecture behind our approach is configured into various modular tasks to carry out different operations as depicted in Figure 1.
We find tourist locations using spatial proximity of photos and enrich the aggregated locations with semantic annotations using textual tags annotated to photos in combination with information provided by Web services. Profiles of locations are built to describe the contexts in which they have been visited. To derive temporal context, geotags and temporal tags annotated with photos are exploited, whereas to derive weather context, we query thirdparty weather Web services to retrieve weather conditions. Relationship between users and locations is drawn to model users’ travel preferences. Then, these users’ preferences are used to estimate the similarities among users. For making recommendations, first we filter the locations based on contextual constraints, and then rank the locations by personalized score. A measure is defined to identify similar users in previously visited cities and aggregate these users’ opinions to obtain personalized score for each location in a target city for the target user.
A context-aware personalized travel recommendation system based on geotagged social media data mining的更多相关文章
- 论文阅读 | CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data
CrystalBall: A Visual Analytic System for Future Event Discovery and Analysis from Social Media Data ...
- Creating adaptive web recommendation system based on user behavior(设计基于用户行为数据的适应性网络推荐系统)
文章介绍了一个基于用户行为数据的推荐系统的实现步骤和方法.系统的核心是专家系统,它会根据一定的策略计算所有物品的相关度,并且将相关度最高的物品序列推送给用户.计算相关度的策略分为两部分,第一部分是针对 ...
- Recommendation system
Dear Prof.Choi: My research interest is mainly the application and optimization of big data and arti ...
- open source project for recommendation system
原文链接:http://blog.csdn.net/cserchen/article/details/14231153 目前互联网上所能找到的知名开源推荐系统(open source project ...
- 海量数据挖掘MMDS week4: 推荐系统Recommendation System
http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- PAT1129:Recommendation System
1129. Recommendation System (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...
- A1129. Recommendation System
Recommendation system predicts the preference that a user would give to an item. Now you are asked t ...
- PAT A1129 Recommendation System (25 分)——set,结构体重载小于号
Recommendation system predicts the preference that a user would give to an item. Now you are asked t ...
- 1129 Recommendation System
1129 Recommendation System (25 分) Recommendation system predicts the preference that a user would gi ...
随机推荐
- [flutter+dart] windows7下开发环境的安装与配置
前言 博主是做嵌入式的,参加工作时间也不久,而且是非科班出身,之前从未接触过移动开发.最近了解到了flutter框架和dart语言,想作为第二语言学习一下,因此会从最基础的环节开始,以此博客作为记录, ...
- 服务器怎么安装mysql数据库
有些小伙伴们想自己玩玩服务器.可以买了服务以后,发现服务器就是一个大框子,没有数据存储.啥都没有,这时候就需要各种软件操作来逐步安装这些东西, 一.使用的工具:xshell(从官网上下载),目的是得使 ...
- linux 分析java 线程状态
将线程3117 的线程消息放到文件dump17中 jstack 13492 > dump17 分析线程 grep java.lang.Thread.State dump17 | awk '{pr ...
- python学习之文本文件上传
最近用python的flask框架完成了一个最基本的文本文件上传,然后读取. 前端用的Angular的ng2-file-upload完成文件上传,后端用flask接收上传的文件,接着做处理. 在交互的 ...
- Use SourceLink enables a great source debugging experience
posts Exploring .NET Core's SourceLink - Stepping into the Source Code of NuGet packages you don't o ...
- 实验9-1 编写一个存储过程proc_test_func
在TestDB数据库中,编写一个存储过程proc_test_func,要求如下: 1)输入参数 一个整型的输入参数 @value 2)要求在一个select语句返回: @value的绝对值, 此绝对值 ...
- IP包设计
IP包 IP核(Intellectual Property core)就是知识产权核或知识产权模块的意思,用于配置FPGA或其它硅芯片上的逻辑资源. 引用链接https://blog.csdn.net ...
- 记flask连接容联云时提示172001,网络错误
直接用sms.py发送没有问题,直接从写好的注册页面发送就不行.在网上查了不少方法,试过了依然没用,结果换了一个网络就好了,估计是部分网络无法正常发送..后来问了下是环境问题,开发环境不稳定
- Go-延时函数defer
关于延时调用函数(Deferred Function Calls) 延时调用函数基本语法如下: defer func_name(param-list) {} 当一个函数前有关键字 defer ...
- L1范数与L2范数
L1范数与L2范数 L1范数与L2范数在机器学习中,是常用的两个正则项,都可以防止过拟合的现象.L1范数的正则项优化参数具有稀疏特性,可用于特征选择:L2范数正则项优化的参数较小,具有较好的抗干 ...