buaacoding_2018算法期末上机G题.地铁建设题解
// 标注:本文旨在为博主确立一种题解的基本范式,以避免博主的题解流于AC代码的粘贴。此基本范式为:完整而简洁明了的思路及其推导说明,力图触及问题的本质并衍生对同类问题的思路分析,使得题解具有泛用性,同时可以写出对代码的优化过程。
简单题,流水线问题的变形: \(U、D、C\)是三条流水线,每次步进都要转换到别的流水线上,其中 \(U[i]、D[i]、C[i]\) 就是转换到对应类型的流水线的第 \(i\) 个元素的成本,求最小总成本 \(^{①}\)
假设 \(f(i)\) 为对前 \(i\) 个元素构成的子问题的最优解集, \(f(i;U)\) 为以 \(U\) 类型为终点的前 \(i\) 个元素构成的子问题的最优解,\(f(i;D)\)、\(f(i; C)\) 同理。 \(^{②}\)
以 \(U[i], D[i], C[i]\) 表示第 \(i\) 个地铁站对应类型的建设成本
不妨设\(f(0;U) = f(0;D) = f(0;C) = 0\)
而且初始值 \(f(1;U) = U[1]\) 、 \(f(1;D) = D[1]\) 、 \(f(1;C) = C[1]\)
定义好状态转移方程的属性之后,结合题意(①)以及 \(f(i)\) 的意义(②),可得状态转移方程:
f(i) =
\left\{
\begin{array}{**lr**}
f(i;U) &=& min\{f(i-1;D), f(i-1; C)\} + U[i] \\
f(i;D) &=& min\{f(i-1;U), f(i-1; C)\} + D[i] \\
f(i;C) &=& min\{f(i-1;U), f(i-1; D)\} + C[i]
\end{array}
\right.
\ \ \ \ \ ,\ i = 1,2,3, \dots, n
\end{equation}
\]
简化就是: \(dp[i][type] = min\{dp[i-1][t] \text{ | t} \in (S-\{type\})\}+cost[i][type] \text{ , 其中 }type\in S = \{U,D,C\}\)
构造出状态转移方程,就可以写代码了。
代码流程:
- 用Subway结构体存储每个地铁站的不同类型的建设成本,然后用一个subway数组存储所有地铁站的不同类型的建设成本
- 然后遍历subway数组并用状态转移方程进行状态转移(记得将dp数组初始化为0,以避免上组数据的影响)
- 最后
dp[n][u], dp[n][d], dp[n][c]
中最小值即为结果。
时间复杂度为 \(O(n)\)
空间复杂度为 \(O(n)\) , 具体大约是 \(7n\) ,开了两个大数组,7 * MAXN * sizeof(long long)
容易MLE(特别是对于long long 癌)
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL long long
using namespace std;
const int MAXN = 200005;
struct Subway{
LL U;
LL D;
LL C;
}subway[MAXN];
LL dp[MAXN][4];
const int u = 1, d = 2, c = 3;
int main(){
LL n;
while(~scanf("%lld", &n)){
memset(dp,0,sizeof(dp));
for(int i = 1; i <= n; i++) {
scanf("%lld%lld%lld", &subway[i].U, &subway[i].D, &subway[i].C);
}
for(int i=1;i<=n;i++){
dp[i][u] = min(dp[i-1][d],dp[i-1][c])+subway[i].U;
dp[i][d] = min(dp[i-1][u],dp[i-1][c])+subway[i].D;
dp[i][c] = min(dp[i-1][u],dp[i-1][d])+subway[i].C;
}
LL ans = min(dp[n][u],dp[n][d]);
ans = min(ans, dp[n][c]);
printf("%lld\n", ans);
}
return 0;
}
对比两个for循环,我们发现其实两个for循环的每一步其实是对应的,也就是说,每个subway[i]
只在第i
次循环中被调用,所以我们可以考虑将两个循环合并成一个。
for(int i = 1; i <= n; i++) {
scanf("%lld%lld%lld", &subway[i].U, &subway[i].D, &subway[i].C);
dp[i][u] = min(dp[i-1][d],dp[i-1][c])+subway[i].U;
dp[i][d] = min(dp[i-1][u],dp[i-1][c])+subway[i].D;
dp[i][c] = min(dp[i-1][u],dp[i-1][d])+subway[i].C;
}
合并循环之后发现,每组subway[i].U
,subway[i].D
, subway[i].C
都是只在该次循环用到,以后不会再用了;而且由于是合在一个循环里,我们没有必要把它存起来以在第二个循环重新调用。也就是说,在这种情况下subway这个数组和Subway结构体的定义完全是多余的,我们完全可以直接删掉,改成用U、D、C三个变量当缓存就行了。
合循环、去数组,这样子我们就将时间复杂度和空间复杂度都降低了一半左右。
时间复杂度为 \(O(n)\)
空间复杂度为 \(O(n)\) , 具体大约是 \(4n\)
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL long long
using namespace std;
const int MAXN = 200005;
LL dp[MAXN][4];
const int u = 1, d = 2, c = 3;
int main(){
LL n;
while(~scanf("%lld", &n)){
LL U,D,C;
memset(dp,0,sizeof(dp));
for(int i = 1; i <= n; i++) {
scanf("%lld%lld%lld", &U, &D, &C);
dp[i][u] = min(dp[i-1][d] , dp[i-1][c]) + U;
dp[i][d] = min(dp[i-1][u] , dp[i-1][c]) + D;
dp[i][c] = min(dp[i-1][u] , dp[i-1][d]) + C;
}
LL ans = min(dp[n][u],dp[n][d]);
ans = min(ans, dp[n][c]);
printf("%lld\n", ans);
}
return 0;
}
那么,还能不能再优化呢?当然可以!
看上面的代码,会发现dp[i]
只与dp[i-1]
有关,是Markov链,无后效性,dp[i-2]
及以前的都无用了,那么我们可以考虑用滚动数组来改进程序。
简单来说,滚动数组就是让数组滚动起来,每次都使用固定的几个存储空间,来达到压缩,节省存储空间的作用。
可以看到,用滚动数组改进之后的程序在空间上不再受n的限制,无论n多大都能处理,有效防止MLE。
时间复杂度为 \(O(n)\) (时间复杂度是改不动的,虽然可以用计组的知识继续优化,但是没多大效果)
空间复杂度为 \(O(1)\)
(另外const int u = 1, d = 2, c = 3;
能帮助你在编写程序的过程中更容易地理清思路)
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL long long
using namespace std;
LL dp[2][3];
const int u = 0, d = 1, c = 2;
int main(){
int n;
while(~scanf("%d", &n)){
dp[0][u] = dp[0][d] = dp[0][c] = 0;
LL U,D,C;
for(int i = 1; i <= n; i++){
scanf("%lld%lld%lld", &U, &D, &C);
dp[1][u] = min(dp[0][d], dp[0][c]) + U;
dp[1][d] = min(dp[0][u], dp[0][c]) + D;
dp[1][c] = min(dp[0][u], dp[0][d]) + C;
dp[0][u] = dp[1][u];
dp[0][d] = dp[1][d];
dp[0][c] = dp[1][c];
}
LL ans = min(dp[0][u], dp[0][d]);
ans = min(ans, dp[0][c]);
printf("%lld\n", ans);
}
return 0;
}
至此,主要的优化工作就结束了。
最后,如果不是老手的话直接想到最后一个版本还是有些难度的,所以一开始不妨先想个naïve(暴力)点的版本再逐模块地优化。
buaacoding_2018算法期末上机G题.地铁建设题解的更多相关文章
- 2016级算法期末上机-G.中等·Bamboo's Fight with DDLs II
中等·Bamboo's Fight with DDLs II 分析 一句话:给定字符串,求最长回文子序列长度,动态规划LCS思想的进阶应用 具体思路如下: 对于任意字符串,如果头尾字符相同,那么字符串 ...
- 2016级算法期末上机-H.难题·AlvinZH's Fight with DDLs III
1119 AlvinZH's Fight with DDLs III 思路 难题,最小点覆盖. 分析题意,某一个任务,既可以在笔记本A的 \(a\) 模式下完成,也可以在笔记本B的 \(b\) 模式下 ...
- 2016级算法期末上机-D.简单·AlvinZH's Fight with DDLs I
1117 AlvinZH's Fight with DDLs I 思路 简单题,动态规划. 本题与期末练习赛B题很相似,而且更为简单些.简化问题:在数字序列上取数,不能取相邻的数. DP数组定义,dp ...
- 2016级算法期末上机-B.简单·ModricWang's Fight with DDLs I
1124 ModricWang's Fight with DDLs I 思路 这道题本质上就是一个多项式求值,题目中的n需要手动算一下,单位复根可以根据复数的性质来求,即\(e^{i\pi}+1=0\ ...
- 北航2018级算法期末上机实录随笔1st
简单记录下题目类型和做题情况,理性复习同时也希望提供一些参考 题目描述 共计八个题目,按照助教的划分,题目分类如下 一个签到(二分查找),两个板子(活动选择.KMP(洛谷kmp模板题)),一个板子变形 ...
- 2016级算法期末上机-F.中等·AlvinZH's Fight with DDLs II
1118 AlvinZH's Fight with DDLs II 思路 中等题,贪心. 理解题意,每次攻击中,可以使某个敌人生命值-1,自己生命值减去∑存活敌人总攻击力. 贪心思想,血量少攻击高的要 ...
- 集训第四周(高效算法设计)G题 (贪心)
G - 贪心 Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Status Desc ...
- 2016级算法期末上机-I.难题·ModricWang's Fight with DDLs III
1126 ModricWang's Fight with DDLs III 思路 由于题目中已经说明了时间经过了正无穷,因此初始位置是不重要的,并且每条边.每个点的地位是均等的.因此到达每个点的概率就 ...
- 2016级算法期末上机-E.中等·ModricWang's Fight with DDLs II
1125 ModricWang's Fight with DDLs II 思路 圆内被划分部分数的计算方式如下: 圆内部的每一个交点都使得总份数增加了一:除此之外,每一根直线段最后抵达圆周时,总份数也 ...
随机推荐
- Django ORM存储datetime 时间误差8小时问题
今天使用django ORM 将获取到的时间入库,并未出现问题,但是后来发现时间晚了8小时,经查询Django官方文档发现获取本地时间和UTC时间有差别. 首先科普下:UTC是协调世界时 UTC相当于 ...
- vue 子组件调用父组件的方法
vue中 父子组件的通信: 子组件通过 props: { //子组件中写的. childMsg: { //字段名 type: Array,//类型 default: [0,0,0] //这样可以指定默 ...
- 10个用于处理日期和时间的 Python 库
Python本身提供了处理时间日期的功能,也就是datetime标准库.除此之外,还有很多优秀的第三方库可以用来转换日期格式,格式化,时区转化等等.今天就给大家分享10个这样的Python库. 上期入 ...
- python集合set相关操作
定义: 1.不同元素组成 2.无序 3.集合中的元素必须是不可变类型 创建集合 1 s = {1,2,3,4,5,6,7,8} 1.定义可变集合 1 2 3 >>> set_test ...
- 用python脚本获取运行环境中的module 列表
由于脚本运行在远程环境,总报错说一些module没有.所以决定彻底对环境进行一次摸底. 于是,用如下代码即可实现: #!/usr/bin/env python import sys try: #pri ...
- ubuntu 切换到ROOT权限
1.sudo+命令,输入当前用户密码后以root权限执行命令,有时间限制且仅限当前命令. 2.sudo -i,输入当前用户密码后以root权限登录shell,无时间限制.使用exit或logout退出 ...
- linux ip命令和ifconfig命令
From https://blog.csdn.net/freeking101/article/details/68939059
- 工厂方法 Factory Method
背景:有一个应用框架,它可以向用户显示多个文档.在这个框架中,两个主要的抽象是类Application和Document.这两个类都是抽象的.客户必须通过它们的子类来做与举替应用相关的实现. 分析:因 ...
- Dataguard配置总结
Dataguard配置总结 本例情形 在主库存在运行的情况下,增加配置dataguard备库,实现双机热备,高可用性. 主库要求,归档模式,强制归档. 主库idty 备库idty_st 1.密码文件 ...
- 【转】LNK1123: 转换到 COFF 期间失败: 文件无效或损坏
用VS2010编译C++项目时出现这样的错误: LNK1123: 转换到 COFF 期间失败: 文件无效或损坏 方案一:(这个方法比较好,在用qt运行时出现问题也能解决) 复制 C:\Windows\ ...