SAS-决策树模型
决策树是日常建模中使用最普遍的模型之一,在SAS中,除了可以通过EM模块建立决策树模型外,还可以通过SAS代码实现。决策树模型在SAS系统中对应的过程为Proc split或Proc hpsplit,两者基本一样,后者效率更高,但在SAS help都查不到这两个过程步,本文参考相关资料主要介绍Proc split过程。其语法结构为:
Proc split options;
Code options;
Decision decdata options;
Describe options;
Freq variable;
In|input variables/options;
Priors probabilities;
Prune node-identifier;
Score options;
Target variable;
1)在proc split中,data=指定分析数据集; outimportance=指定输出数据集,包括自变量的重要性;outleaf=指定输出数据集,包括各叶节点的统计指标;outmatrix=指定数据集,包括描述性统计指标;outseq=指定输出数据集,包括子树的统计指标;outtree=指定输出数据集,包括描述树的统计指标;leafsize=指定一个叶节点包含的最少观测数;maxbranch=指定一个节点的最大分枝数;maxdepth=指定最大的数深度;splitsize=指定一个节点分割的最小观测数;subtree=指定选择子树的方法。
proc split data=other.train outimportance=test_1 outleaf=test_2 outmatrix=test_3 outseq=test_4 outtree=test_5;
in arpu mou gprs;
target liwang_flag;
run;
assess=指定模型评估方法,包括impurity、lift、profit、statistic。
criterion=指定决策树分割标准,针对二分类变量和分类变量,Chisq表示pearson卡方,probchisq表示pearson卡方的p值,为默认,entropy表示信息增益,eratio表示信息增益率,gini表示通过gini系数分割;针对定距、定比变量,variance,probe表示F-test的p值,为默认,F表F统计量。其中,ID3算法使用信息增益作为属性分割标准,C4.5、C5.0算法使用信息增益率作为属性分割标准,CART算法使用gini系数作为属性分割标准,CHAID算法使用卡方和F检验作为属性分割标准。
2)code生成data步代码,用来给观测计分,file=指定代码输出文件。
3)decision。
4)describe生成决策树规则的描述,file=指定描述输出文件。
5)freq表示给自变量赋予频数。
6)in或input指定自变量,可以申明多次,在“/”后的level=代表输入变量的类型,interval、ordinal、nominal,默认为interval,当自变量有多个类型时,可以申明多个input,然后后面用level指定变量类型。
7)priors指训练集中目标类的先验概率,与decision互斥,proportional(pro)指各类在训练集中的占比,或直接列出各类占比,如priors‘0’=0.6‘1’=0.4。
8)prune表示剪枝,与intree=和indmsplit=选项合用。
9)score进行计分,data=指定输入数据集,out=指定输出数据集。
10)target指定因变量,在“/”后,level=指定因变量类型,包括binary、nominal、ordinal、interval,默认为interval。
Proc split data=other.train leafsize=50 maxbranch=3 maxdepth=6assess=impurity criterion=chisq;
Input arpu mou gprs/level=interval;
Input product_flag/level=nominal;
Target liwang_flag/level=binary;
Code file='c:\users\edcba123\desktop\rule_1.txt';
Describe file='c:\users\edcba123\desktop\rule_2.txt';
Score data=other.train out=test;
Priors proportional;
Run;
SAS-决策树模型的更多相关文章
- 决策树模型 ID3/C4.5/CART算法比较
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完 ...
- 决策树模型比较:C4.5,CART,CHAID,QUEST
(1)C4.5算法的特点为: 输入变量(自变量):为分类型变量或连续型变量. 输出变量(目标变量):为分类型变量. 连续变量处理:N等分离散化. 树分枝类型:多分枝. 分裂指标:信息增益比率gain ...
- chapter02 三种决策树模型:单一决策树、随机森林、GBDT(梯度提升决策树) 预测泰坦尼克号乘客生还情况
单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型, ...
- ML——决策树模型
决策树模型 优点:高效简单.易于理解,可以处理不相关特征. 缺点:容易过拟合,训练集在特征上是完备的 决策树过程:特征选择.划分数据集.构建决策树.决策树剪枝 决策树选择最优的划分特征,将数据集按照最 ...
- 用决策树模型求解回归问题(regression tree)
How do decision trees for regression work? 决策树模型既可以求解分类问题(对应的就是 classification tree),也即对应的目标值是类别型数据, ...
- 机器学习之使用sklearn构造决策树模型
一.任务基础 导入所需要的库 import matplotlib.pyplot as plt import pandas as pd %matplotlib inline 加载sklearn内置数据集 ...
- Python 实现基于信息熵的 ID3 算法决策树模型
版本说明 Python version: 3.6.6 |Anaconda, Inc.| (default, Jun 28 2018, 11:21:07) [MSC v.1900 32 bit (Int ...
- R_针对churn数据用id3、cart、C4.5和C5.0创建决策树模型进行判断哪种模型更合适
data(churn)导入自带的训练集churnTrain和测试集churnTest 用id3.cart.C4.5和C5.0创建决策树模型,并用交叉矩阵评估模型,针对churn数据,哪种模型更合适 决 ...
- 吴裕雄 python 机器学习——分类决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
随机推荐
- 聊聊pytorch中的DataLoader
实际上pytorch在定义dataloader的时候是需要传入很多参数的,比如,number_workers, pin_memory, 以及shuffle, dataset等,其中sampler参数算 ...
- [LeetCode&Python] Problem 671. Second Minimum Node In a Binary Tree
Given a non-empty special binary tree consisting of nodes with the non-negative value, where each no ...
- Sql Server数据字典
1:添加字段属性或者表属性 execute sys.sp_addextendedproperty @name = N'MS_Description', @value = N'要添加的属性信息', @l ...
- 搭建opencv javaweb项目
搭建opencv javaweb项目 用到的技术maven.git.ssm.opencv.javaweb 搭建opencv javaweb项目时,踩了很多坑:怀疑过spring,想过python,最后 ...
- javascript 之 继承
1.传统方式--->原型链 (过多继承了没用的属性) Grand.prototype.lastname = 'zhang' function Grand(); } var grand = ne ...
- Windows Server 2012配置iis遇到的问题
发布网站访问时报500 - 内部服务器错误,经排查是Windows Server 2012上的iis配置有问题,有些需要的功能没有配置. 在重新配置iis时总是安装失败,提示存储空间不足. 在网上查找 ...
- Python学习笔记-chapter1
我自幼时自觉聪慧,但实缺恒力,遂二十余岁却一事无成,亦无一技傍身,实属惭愧. 少时便仰慕于新兴世界之IT技术,然因惰性,未曾一日习学. 今陷此困境,聊以度日,反无端生出些许时间,便志要潜心研学,不求能 ...
- 如何使用python在保留原excel格式的前提下插入/修改数据
一.需求分析: 统计的报表中需要每日查询当天数据并追加到原有的excel后面. 因为原始excel格式已经设定好,如果使用xlwt,仅仅指定设定我们要插入的单元格的格式,原始数据的格式会被初始化. 所 ...
- PHP连接mysql数据库报错:Call to undefined function mysql_connect()
http://php.net/manual/zh/intro.mysqli.php 系统环境PHP7.0+Mysql5.7+Apache2. 运行一个数据库连接测试示例时报错: [client 127 ...
- LibreOffice字体问题解决;从window复制到Ubuntu
拷贝或下载windows系统的Fonts字体集到对应的linux系统下;以ubuntu16.04系统为例. 1.进入windows系统,到C:WindowsFonts目录,复制拷贝自己需要的字体(也可 ...