深度学习(二)--深度信念网络(Deep Belief Network,DBN)

一、受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)

在介绍深度信念网络之前需要先了解一下受限玻尔兹曼机:受限玻尔兹曼机(英语:restricted Boltzmann machine,RBM)是一种可通过输入数据集学习概率分布的随机生成神经网络。RBM最初由发明者保罗·斯模棱斯基(PaulSmolensky)于1986年命名为簧风琴(Harmonium),但直到杰弗里·辛顿及其合作者在2000年代中叶发明快速学习算法后,受限玻尔兹曼机才变得知名。参考:https://baike.so.com/doc/8386787-8704719.html

之所以设计玻尔兹曼机,就是因为在最初的状态下,不知道数据的真实分布状态,为了在这种状态下能够在无监督情况下,训练学习出数据的的特征,所以采用受限玻尔兹曼机进行处理。

受限波尔兹曼机是由两层网络组成(参考http://www.cnblogs.com/pinard/p/6530523.html

它是一个个两层的神经网络,如下图所示:

  上面一层神经元组成隐藏层(hidden layer), 用h向量隐藏层神经元的值。下面一层的神经元组成可见层(visible layer),用v向量表示可见层神经元的值。隐藏层和可见层之间是全连接的,这点和DNN类似, 隐藏层神经元之间是独立的,可见层神经元之间也是独立的。连接权重可以用矩阵W表示。和DNN的区别是,RBM不区分前向和反向,可见层的状态可以作用于隐藏层,而隐藏层的状态也可以作用于可见层。隐藏层的偏倚系数是向量b,而可见层的偏倚系数是向量a。

  常用的RBM一般是二值的,即不管是隐藏层还是可见层,它们的神经元的取值只为0或者1。本文只讨论二值RBM。

  总结下RBM模型结构的结构:主要是权重矩阵W, 偏倚系数向量a和b,隐藏层神经元状态向量h和可见层神经元状态向量v。

二、深度信念网络(DBN)

参考https://blog.csdn.net/a819825294/article/details/53608141

深度信念网络主要是由多层受限玻尔兹曼机组成,具体结构如图1所示

 
图1

深度信念网络的主要重点在于如何训练学习,如图

首先对单一的RBM进行训练:将初始数据x输入RBM中,通过h1=v1*w11+v2*w21+v3*w31+...+vn*wn1+b1计算出h1的值,依次对hm进行计算,之后通过反向求出vn'的值,通过对vn‘’和输入值x对应的vn进行比对,从而调整w进行学习,最终使得vn和vn'相差最小。具体的公式表达参考https://www.cnblogs.com/kemaswill/p/3203605.html

之后将学习到的h作为下一层RBM的输入,学习下一层RBM,与此同时也要对第一层的RBM再次进行修正。以此类推直到所有的RBM都实现学习。

深度学习(二)--深度信念网络(DBN)的更多相关文章

  1. (转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)

    无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就o ...

  2. 深度学习——手动实现残差网络ResNet 辛普森一家人物识别

    深度学习--手动实现残差网络 辛普森一家人物识别 目标 通过深度学习,训练模型识别辛普森一家人动画中的14个角色 最终实现92%-94%的识别准确率. 数据 ResNet介绍 论文地址 https:/ ...

  3. 学习笔记︱Nvidia DIGITS网页版深度学习框架——深度学习版SPSS

    DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learnin ...

  4. 一天搞懂深度学习-训练深度神经网络(DNN)的要点

    前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...

  5. 【神经网络与深度学习】深度学习实战——caffe windows 下训练自己的网络模型

    1.相关准备 1.1 手写数字数据集 这篇博客上有.jpg格式的图片下载,附带标签信息,有需要的自行下载,博客附带百度云盘下载地址(手写数字.jpg 格式):http://blog.csdn.net/ ...

  6. 深度学习二、CNN(卷积神经网络)概念及理论

    一.卷积神经网络(CNN) 1.常见的CNN结构有:LeNet-5.AlexNet.ZFNet.VGGNet.ResNet等.目前效率最高的是ResNet. 2.主要的层次: 数据输入层:Input ...

  7. 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN

    [前言]      本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...

  8. 吴恩达深度学习笔记1-神经网络的编程基础(Basics of Neural Network programming)

    一:二分类(Binary Classification) 逻辑回归是一个用于二分类(binary classification)的算法.在二分类问题中,我们的目标就是习得一个分类器,它以对象的特征向量 ...

  9. PYTHON深度学习6.2RNN循环网络

    #简单的循环网络 #-*-coding:utf-8 -*- from keras.datasets import imdbfrom keras.preprocessing import sequenc ...

  10. go微服务框架go-micro深度学习(二) 入门例子

    上一篇帖子简单介绍了go-micro的整体框架结构,这一篇主要写go-micro使用方式的例子,中间会穿插一些go-micro的源码,和调用流程图,帮大家更好的理解go-micro的底层.更详细更具体 ...

随机推荐

  1. python基础3、4---流程控制、运算符

    1.for循环 和while循环 for 临时变量 in 待遍历的数据: 循环体 (循环体这里一般加break,结束循环,执行else代码) else: 循环不满足条件执行的代码 while  表达式 ...

  2. plsql插入数据出现乱码问题

    今天在使用plsql 插数据时 ,遇到的问题就是插入进去是乱码问题,在这里总结一下如何解决的 首先声明一下就是: 现在只有客户端,没有服务端,有一些需求就是总是有许多数据要插入进去,但是在使用sql语 ...

  3. bbs项目学习到的知识点(orm中的extra)

    注册 form组件给input 的标签 添加样式类  参见这篇博客(点击) 上传图像 1.解决 一点击图像就会直接打开上传文件的按钮 #这儿利用了 label标签和input的特殊的联动功能 < ...

  4. 配置STP、RSTP以及负载均衡

    生成树协议是一种二层管理协议,它通过有选择性地阻塞网络冗余链路来达到消除网络二层环路的目的,同时具备链路的备份功能. 每个VLAN都生成一棵树是一种比较直接,而且最简单的解决方法.它能够保证每一个VL ...

  5. MAC--NPAPI学习(一)简要介绍NPAPI的函数

    NPAPI是浏览器与插件交互的接口,下面先简要介绍一下NPAPI的函数: Mach-o entry points NPError NP_Initialize(NPNetscapeFuncs* brow ...

  6. Linux上更换默认的java版本

    最近注意的一个问题: 在Server上和本地里都使用了相同版本的Tomcat,但是在Server上的tomcat日志里会出现很多java异常的错误, 但是本地的tomcat日志没有出现,初步判断应该是 ...

  7. jmeter中提取json串

    https://blog.csdn.net/zha6476003/article/details/80295068

  8. fillder抓包工具详解

    https://www.cnblogs.com/yyhh/p/5140852.html

  9. 3,列表的 深 浅 copy

    如果列表只有一层,深浅copy是一样一样的,没有什么区别,你修改了copy后的列表,copy前的列表并不会随之改变. 如果列表中嵌套这列表,这是你修改了copy后第二层列表里面的元素,copy前第二层 ...

  10. (转)python爬虫:http请求头部(header)详解

    本文根据RFC2616(HTTP/1.1规范),参考 http://www.w3.org/Protocols/rfc2068/rfc2068 http://www.w3.org/Protocols/r ...