深度学习(二)--深度信念网络(DBN)
深度学习(二)--深度信念网络(Deep Belief Network,DBN)
一、受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)
在介绍深度信念网络之前需要先了解一下受限玻尔兹曼机:受限玻尔兹曼机(英语:restricted Boltzmann machine,RBM)是一种可通过输入数据集学习概率分布的随机生成神经网络。RBM最初由发明者保罗·斯模棱斯基(PaulSmolensky)于1986年命名为簧风琴(Harmonium),但直到杰弗里·辛顿及其合作者在2000年代中叶发明快速学习算法后,受限玻尔兹曼机才变得知名。参考:https://baike.so.com/doc/8386787-8704719.html
之所以设计玻尔兹曼机,就是因为在最初的状态下,不知道数据的真实分布状态,为了在这种状态下能够在无监督情况下,训练学习出数据的的特征,所以采用受限玻尔兹曼机进行处理。
受限波尔兹曼机是由两层网络组成(参考http://www.cnblogs.com/pinard/p/6530523.html)
它是一个个两层的神经网络,如下图所示:
上面一层神经元组成隐藏层(hidden layer), 用h向量隐藏层神经元的值。下面一层的神经元组成可见层(visible layer),用v向量表示可见层神经元的值。隐藏层和可见层之间是全连接的,这点和DNN类似, 隐藏层神经元之间是独立的,可见层神经元之间也是独立的。连接权重可以用矩阵W表示。和DNN的区别是,RBM不区分前向和反向,可见层的状态可以作用于隐藏层,而隐藏层的状态也可以作用于可见层。隐藏层的偏倚系数是向量b,而可见层的偏倚系数是向量a。
常用的RBM一般是二值的,即不管是隐藏层还是可见层,它们的神经元的取值只为0或者1。本文只讨论二值RBM。
总结下RBM模型结构的结构:主要是权重矩阵W, 偏倚系数向量a和b,隐藏层神经元状态向量h和可见层神经元状态向量v。
二、深度信念网络(DBN)
参考https://blog.csdn.net/a819825294/article/details/53608141
深度信念网络主要是由多层受限玻尔兹曼机组成,具体结构如图1所示
图1
深度信念网络的主要重点在于如何训练学习,如图
首先对单一的RBM进行训练:将初始数据x输入RBM中,通过h1=v1*w11+v2*w21+v3*w31+...+vn*wn1+b1计算出h1的值,依次对hm进行计算,之后通过反向求出vn'的值,通过对vn‘’和输入值x对应的vn进行比对,从而调整w进行学习,最终使得vn和vn'相差最小。具体的公式表达参考https://www.cnblogs.com/kemaswill/p/3203605.html
之后将学习到的h作为下一层RBM的输入,学习下一层RBM,与此同时也要对第一层的RBM再次进行修正。以此类推直到所有的RBM都实现学习。
深度学习(二)--深度信念网络(DBN)的更多相关文章
- (转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就o ...
- 深度学习——手动实现残差网络ResNet 辛普森一家人物识别
深度学习--手动实现残差网络 辛普森一家人物识别 目标 通过深度学习,训练模型识别辛普森一家人动画中的14个角色 最终实现92%-94%的识别准确率. 数据 ResNet介绍 论文地址 https:/ ...
- 学习笔记︱Nvidia DIGITS网页版深度学习框架——深度学习版SPSS
DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learnin ...
- 一天搞懂深度学习-训练深度神经网络(DNN)的要点
前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...
- 【神经网络与深度学习】深度学习实战——caffe windows 下训练自己的网络模型
1.相关准备 1.1 手写数字数据集 这篇博客上有.jpg格式的图片下载,附带标签信息,有需要的自行下载,博客附带百度云盘下载地址(手写数字.jpg 格式):http://blog.csdn.net/ ...
- 深度学习二、CNN(卷积神经网络)概念及理论
一.卷积神经网络(CNN) 1.常见的CNN结构有:LeNet-5.AlexNet.ZFNet.VGGNet.ResNet等.目前效率最高的是ResNet. 2.主要的层次: 数据输入层:Input ...
- 【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN
[前言] 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者 ...
- 吴恩达深度学习笔记1-神经网络的编程基础(Basics of Neural Network programming)
一:二分类(Binary Classification) 逻辑回归是一个用于二分类(binary classification)的算法.在二分类问题中,我们的目标就是习得一个分类器,它以对象的特征向量 ...
- PYTHON深度学习6.2RNN循环网络
#简单的循环网络 #-*-coding:utf-8 -*- from keras.datasets import imdbfrom keras.preprocessing import sequenc ...
- go微服务框架go-micro深度学习(二) 入门例子
上一篇帖子简单介绍了go-micro的整体框架结构,这一篇主要写go-micro使用方式的例子,中间会穿插一些go-micro的源码,和调用流程图,帮大家更好的理解go-micro的底层.更详细更具体 ...
随机推荐
- 微信小程序页面跳转,带参数跳转
1. wx.navigateTo (保留当前页面,跳转到应用内的某个页面,使用wx.navigateBack可以返回到原页面.) 路径:只能跳转非tabbar路径 参数: 'path?key=v ...
- 【oracle入门】SQL的命令动词
SQL的功能 命令动词 数据定义 CREATE,DROP,ALTER 数据操纵 SELECT,INSERT,UPDATE,DELETE 数据控制 CRANT,REVOKE
- ossfs 使用挂在到ecs -centos 6.8
# 帮助文档 ```oss 的所有文档都在这个链接上https://promotion.aliyun.com/ntms/act/ossdoclist.html?spm=5176.7933691.744 ...
- Installshield创建快捷方式不能正常运行的几种原因
Installshield软件提供创建快捷方式的功能,但是经常有朋友发现创建了以后快捷方式不能运行,在此列一下几种常见原因供各位朋友参考: 1. 没有选择相应的working directory,这种 ...
- Codeforces1056E.Check Transcription(枚举+Hash)
题目链接:传送门 题目: E. Check Transcription time limit per test seconds memory limit per test megabytes inpu ...
- Windows Server 2012配置iis遇到的问题
发布网站访问时报500 - 内部服务器错误,经排查是Windows Server 2012上的iis配置有问题,有些需要的功能没有配置. 在重新配置iis时总是安装失败,提示存储空间不足. 在网上查找 ...
- vue配置 请求本地json数据
第一步:在build文件夹下找到webpack.dev.conf.js文件,在const portfinder = require('portfinder')后添加 //第一步const expres ...
- Python 虚拟环境[virtualenv/virtualenvwrapper]设置
virtualenv virtualenv 是一个可以在同一计算机中隔离多个python版本的工具.有时,两个不同的项目可能需要不同版本的python,如 python2.6.6 / python ...
- ROS * 通过launch文件添加多个模型
我添加的是dae模型,urdf文件过两天贴 方法一 : <launch> <!-- these are the arguments you can pass this launch ...
- ionic上拉加载组件 ion-infinite-scroll自动调用多次的问题
参考文章地址:http://www.cnblogs.com/luleixia/p/6402418.html ionic 一个上拉刷新的组件 ion-infinite-scroll,如果页面未填充满页面 ...