http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1220

$G(n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^{n^2}[k|ij]\cdot k$
$ \small{[k|ij]\to[\frac{k}{gcd(i,k)}|j]}$
$G(n)=\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^{n^2}[\frac{k}{gcd(i,k)}|j]\cdot k$
$ \small{gcd(i,k)\to g,i/g\to i,\sum\limits_{j=1}^X[Y|j]\to \lfloor\frac XY\rfloor}$
$G(n)=\sum\limits_{k=1}^{n^2}\sum\limits_{g|k}\sum\limits_{i=1}^{n/g}[gcd(i,k/g)=1]\lfloor\frac{n}{k/g}\rfloor\cdot k$
$ \small{k/g\to k}$
$G(n)=\sum\limits_{g=1}^{n}\sum\limits_{k=1}^{n}\sum\limits_{i=1}^{n/g}[gcd(i,k)=1]\lfloor\frac{n}{k}\rfloor\cdot k\cdot g$
$\small{[X=1]\to\sum\limits_{d|X}\mu(d)}$
$G(n)=\sum\limits_{g=1}^{n}\sum\limits_{k=1}^{n}\sum\limits_{i=1}^{n/g}\sum\limits_{d|i\wedge d|k}\mu(d)\lfloor\frac{n}{k}\rfloor\cdot k\cdot g$
$\small{i/d\to i,k/d\to k}$
$G(n)=\sum\limits_{d=1}^n\sum\limits_{g=1}^{n/d}\sum\limits_{k=1}^{n/d}\sum\limits_{i=1}^{n/gd}\mu(d)\lfloor\frac{n}{kd}\rfloor\cdot k\cdot g\cdot d$
$\small{\sum\limits_{i=1}^X1\to X}$
$G(n)=\sum\limits_{d=1}^n\sum\limits_{g=1}^{n/d}\sum\limits_{k=1}^{n/d}\mu(d)\lfloor\frac{n}{gd}\rfloor\lfloor\frac{n}{kd}\rfloor\cdot k\cdot g\cdot d$
$\small{\big(\sum\limits_{i=1}^{n}i\lfloor\frac{n}{d}\rfloor\big)^2\to F(n)}$
$G(n)=\sum\limits_{d=1}^n\mu(d)d\cdot F(\lfloor\frac{n}{d}\rfloor)$
$\small{G\to \sum g,F\to \sum f}$
$g(n)=\sum \limits_{d|n}\mu(d)d\cdot f(n/d)$
$f(n)=\sum \limits_{d|n}d\cdot g(n/d)$
$\small{\sum f\to F,\sum g\to G}$
$F(n)=\sum\limits_{d=1}^nd\cdot G(\lfloor\frac{n}{d}\rfloor)$
$G(n)=F(n)-\sum\limits_{d=2}^nd\cdot G(\lfloor\frac{n}{d}\rfloor)$

记录一下推公式过程。

最后用记忆化搜索就可以$O(n^{3/4})$过了,如果加上线性预处理可以做到$O(n^{2/3})$

#include<bits/stdc++.h>
typedef unsigned long long i64;
const int P=1e9+;
int n,vG[],vg[],B;
int G(int n){
int&ans=n<=B?vg[n]:vG[::n/n];
if(ans)return ans;
i64 s=,sx=n*;
for(int l=,r,c;l<n;l=r){
r=n/(c=n/(l+));
i64 t=i64(r+l+)*(r-l);
sx+=t*c;
s+=t%P*G(c);
if(s>i64(1.5e19))s%=P;
}
sx=sx/%P;
s=(sx*sx%P-s%P*((P+)/)%P+P)%P;
return ans=s;
}
int main(){
scanf("%d",&n);
B=sqrt(n);
printf("%d\n",G(n));
return ;
}

51nod1220 约数之和的更多相关文章

  1. [51nod1220] 约数之和(杜教筛+莫比乌斯反演)

    题面 传送门 题解 嗯--还是懒得写了--这里 //minamoto #include<bits/stdc++.h> #define R register #define IT map&l ...

  2. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  3. 【动态规划】mr359-最大公约数之和

    [题目大意] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入一个正整数S. 输出最大的约数之和. 样例输入 Sample Input 11 样例输出 Sample ...

  4. 51Nod 约数之和

                              1220 约数之和                                  题目来源: Project Euler 基准时间限制:3 秒 ...

  5. 约数之和(POJ1845 Sumdiv)

    最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...

  6. [51Nod 1220] - 约数之和 (杜教筛)

    题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑n​j=1∑n​d(ij) 题目分析 ...

  7. POJ1845Sumdiv题解--约数之和

    题目链接 https://cn.vjudge.net/problem/POJ-1845 分析 \(POJ\)里的数学题总是这么妙啊 首先有一个结论就是\(A=\prod{ \ {p_i}^{c_i} ...

  8. 【51nod1220】约数之和

    题目 d(k)表示k的所有约数的和.d(6) = 1 + 2 + 3 + 6 = 12. 定义S(N) = ∑1<=i<=N ∑1<=j<=N d(i*j). 例如:S(3) ...

  9. ZZNU 正约数之和

    #include<stdio.h> #include<string.h> #include<math.h> #include<time.h> #incl ...

随机推荐

  1. JavaScript几种常见的继承方法

    1.call() 方法 call() 方法是与经典的对象冒充方法最相似的方法.它的第一个参数用作 this 的对象.其他参数都直接传递给函数自身 function Huster(name,idNum, ...

  2. 编辑器测试-TinyMCE

    一级标签 二级便签 引用段落1231456456 普通段落 链接 简书 https://www.jianshu.com/p/edee77363855 import pygame WINWIDTH = ...

  3. python基础—列表的使用[]

    names = ['zhangyang','guyun','xiangpeng','xuliangchen']print(names[0])print(names[1:3])#切片print(name ...

  4. dubbo could not get local host ip address will use 127.0.0.1 instead 异常处理

    dubbo could not get local host ip address will use 127.0.0.1 instead 查看hostname localhost:spring wls ...

  5. git教程:添加远程仓库

    转自: 添加远程仓库 现在的情景是,你已经在本地创建了一个Git仓库后,又想在GitHub创建一个Git仓库,并且让这两个仓库进行远程同步,这样,GitHub上的仓库既可以作为备份,又可以让其他人通过 ...

  6. Python全栈之路----常用模块----hashlib加密模块

    加密算法介绍 HASH       Python全栈之路----hash函数 Hash,一般翻译做“散列”,也有直接音译为”哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列 ...

  7. Number.toLocalString() js

    地址链接:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocal ...

  8. SpringBoot打成jar包后,获取不到读取resources目录下文件路径的问题

    问题描述: Springboot没有打成jar之前,可以成功获取读取resources目录下xxx.json文件的 路径.但是打成jar包后,接口调不通,原因是获取不到文件的路径. 原因: 在本地进行 ...

  9. js date 和 math

    Math 用于执行常用的数学任务 console.log(Math.E); 自然数底数2.718 console.log(Math.PI); 圆周率3.1415926 console.log(Math ...

  10. jsp的四个作用域page、request、session、application

    1.简单说 page指当前页面.在一个jsp页面里有效 2.request 指从http请求到服务器处理结束,返回响应的整个过程.在这个过程中使用forward方式跳转多个jsp.在这些页面里你都可以 ...