[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.4 粘性热传导流体动力学方程组
粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u}}{\rd t} +\n p -\n\sez{ \sex{\mu'-\cfrac{2}{3}\mu}\Div{\bf u} } -2\Div(\mu {\bf S})&=\rho {\bf F},\\ \rho\cfrac{\rd e}{\rd t} +p\Div{\bf u} -\mu\sum_{i,j=1}^3 \sex{\cfrac{\p u_i}{\p x_j}+\cfrac{\p u_j}{\p x_i}}\cfrac{\p u_j}{\p x_i} -\sex{\mu'-\cfrac{2}{3}\mu}(\Div{\bf u})^2 &=\Div(\kappa\n T). \eea \eeex$$
[物理学与PDEs]第2章第2节 粘性流体力学方程组 2.4 粘性热传导流体动力学方程组的更多相关文章
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1. 粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2. 理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3. 右端项具有间 ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1. 记号与假设 (1) 已燃气体的化学能为 $0$. (2) 单位质量的未燃气体的化学能为 $g_0>0$. 2. 对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1. 粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd ...
- [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1. 记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2. 物理化学 (1) 燃烧过程中, 通过化学反应 ...
- [物理学与PDEs]第3章第3节 电导率 $\sigma$ 为无穷时的磁流体力学方程组 3.3 磁场线``冻结''原理
磁场线``冻结''原理: 在 $\sigma=\infty$ 时, 初始时刻分布在同一磁场线上的质点, 在运动过程中会一直保持在同一磁场线上, 即磁场线好像``冻结''在物质上. 事实上, $\cfr ...
- [物理学与PDEs]第2章第5节 一维流体力学方程组的 Lagrange 形式 5.2 Lagrange 坐标
1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\r ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1. 一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.3 理想流体力学方程组的数学结构
1. 局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$. 2. 将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\ ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组
1. 质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0. \eee$$ 2. 动量守恒定 ...
- [物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识
1. 理想流体: 指忽略粘性及热传导的流体. 2. 流体的状态 (运动状态及热力学状态) 的描述 (1) 速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度. (2) ...
随机推荐
- iOS Accessibility指南
开发者经常会为用户开发一些令人充满惊喜的App.但是,开发者真的为每一个潜在的用户都做适配了么?是否每个人都可以真正使用你的APP呢? 设计APP.产品或者任何类型的服务,都要考虑到所有用户,包括视力 ...
- SpringIOC和AOP简单概述
Spring学习:主要学习两大块IOC AOP 一.IOC IOC:控制反转(也可以叫做依赖注入)的基本认识: 当某个Java对象(调用者)需要调用另一个Java对象(被依赖对象)的方法时 ...
- Python脱产8期 Day13 2019/4/28
一 函数的嵌套定义 1在一个函数的内部定义另一个函数. 2.为什么有函数的嵌套定义: # 1)函数fn2想直接使用fn1函数的局部变量,可以讲fn2直接定义到fn1的内部,这样fn2就可以直接访问fn ...
- 洛谷 P1049 装箱问题
\[传送门在这呢!!\] 题目描述 有一个箱子容量为\(V\)(正整数,\(0 \le V \le 20000\)),同时有\(n\)个物品(\(0<n \le 30\),每个物品有一个体积(正 ...
- 08-JavaScript中的函数
JavaScript中的函数 1.函数简介 函数:就是将一些语句进行封装,然后通过调用的形式,执行这些语句. 函数的作用: 将大量重复的语句写在函数里,以后需要这些语句的时候,可以直接调用函数,避免重 ...
- Django中间件2
前戏 我们在前面的课程中已经学会了给视图函数加装饰器来判断是用户是否登录,把没有登录的用户请求跳转到登录页面.我们通过给几个特定视图函数加装饰器实现了这个需求.但是以后添加的视图函数可能也需要加上装饰 ...
- RBAC权限管理模型 产品经理 设计
RBAC权限管理模型:基本模型及角色模型解析及举例 | 人人都是产品经理http://www.woshipm.com/pd/440765.html RBAC权限管理 - PainsOnline的专栏 ...
- php函数 array_combine
(PHP 5, PHP 7) array_combine — 创建一个数组,用一个数组的值作为其键名,另一个数组的值作为其值 array_combine ( array $keys , array $ ...
- adoop(四)HDFS集群详解
阅读目录(Content) 一.HDFS概述 1.1.HDFS概述 1.2.HDFS的概念和特性 1.3.HDFS的局限性 1.4.HDFS保证可靠性的措施 二.HDFS基本概念 2.1.HDFS主从 ...
- 面试题(一续Spring)
9.Spring体系结构和jar用途 参考https://blog.csdn.net/sunchen2012/article/details/53939253 spring官网给出了一张spring3 ...