pandas有一种功能非常强大的方法,它就是accessor,可以将它理解为一种属性接口,通过它可以获得额外的方法。其实这样说还是很笼统,下面我们通过代码和实例来理解一下。

pd.Series._accessors
Out[93]: {'cat', 'dt', 'str'}

对于Series数据结构使用_accessors方法,我们得到了3个对象:cat,str,dt

  • .cat:用于分类数据(Categorical data)

  • .str:用于字符数据(String Object data)

  • .dt:用于时间数据(datetime-like data)

下面我们依次看一下这三个对象是如何使用的。

一、str对象的使用

  • Series数据类型:str字符串
# 定义一个Series序列
addr = pd.Series([
'Washington, D.C. 20003',
'Brooklyn, NY 11211-1755',
'Omaha, NE 68154',
'Pittsburgh, PA 15211'
])
addr.str.upper()
Out[95]:
0 WASHINGTON, D.C. 20003
1 BROOKLYN, NY 11211-1755
2 OMAHA, NE 68154
3 PITTSBURGH, PA 15211
dtype: object
addr.str.count(r'\d')
Out[96]:
0 5
1 9
2 5
3 5
dtype: int64

关于以上str对象的2个方法说明:

  • Series.str.upper:将Series中所有字符串变为大写;

  • Series.str.count:对Series中所有字符串的个数进行计数;

其实不难发现,该用法的使用与Python中字符串的操作很相似。没错,在pandas中你一样可以这样简单的操作,而不同的是你操作的是一整列的字符串数据。仍然基于以上数据集,再看它的另一个操作:

regex = (r'(?P<city>[A-Za-z ]+), '      # 一个或更多字母
r'(?P<state>[A-Z]{2}) ' # 两个大写字母
r'(?P<zip>\d{5}(?:-\d{4})?)') # 可选的4个延伸数字
addr.str.replace('.', '').str.extract(regex)
Out[98]:
city state zip
0 Washington DC 20003
1 Brooklyn NY 11211-1755
2 Omaha NE 68154
3 Pittsburgh PA 15211

关于以上str对象的2个方法说明:

  • Series.str.replace:将Series中指定字符串替换;

  • Series.str.extract:通过正则表达式提取字符串中的数据信息;

这个用法就有点复杂了,因为很明显看到,这是一个链式的用法。通过replace将 " . " 替换为"",即为空,紧接着又使用了3个正则表达式(分别对应city,state,zip)通过extract对数据进行了提取,并由原来的Series数据结构变为了DataFrame数据结构。

当然,除了以上用法外,常用的属性和方法还有.rstrip,.contains,split等,我们通过下面代码查看一下str属性的完整列表:

[i for i in dir(pd.Series.str) if not i.startswith('_')]
Out[99]:
['capitalize',
'cat',
'center',
'contains',
'count',
'decode',
'encode',
'endswith',
'extract',
'extractall',
'find',
'findall',
'get',
'get_dummies',
'index',
'isalnum',
'isalpha',
'isdecimal',
'isdigit',
'islower',
'isnumeric',
'isspace',
'istitle',
'isupper',
'join',
'len',
'ljust',
'lower',
'lstrip',
'match',
'normalize',
'pad',
'partition',
'repeat',
'replace',
'rfind',
'rindex',
'rjust',
'rpartition',
'rsplit',
'rstrip',
'slice',
'slice_replace',
'split',
'startswith',
'strip',
'swapcase',
'title',
'translate',
'upper',
'wrap',
'zfill']

属性有很多,对于具体的用法,如果感兴趣可以自己进行摸索练习。

二、dt对象的使用

  • Series数据类型:datetime

因为数据需要datetime类型,所以下面使用pandas的date_range()生成了一组日期datetime演示如何进行dt对象操作。

daterng = pd.Series(pd.date_range('2017', periods=9, freq='Q'))
daterng
Out[101]:
0 2017-03-31
1 2017-06-30
2 2017-09-30
3 2017-12-31
4 2018-03-31
5 2018-06-30
6 2018-09-30
7 2018-12-31
8 2019-03-31
dtype: datetime64[ns]
daterng.dt.day_name()
Out[102]:
0 Friday
1 Friday
2 Saturday
3 Sunday
4 Saturday
5 Saturday
6 Sunday
7 Monday
8 Sunday
dtype: object
# 查看下半年
daterng[daterng.dt.quarter > 2]
Out[104]:
2 2017-09-30
3 2017-12-31
6 2018-09-30
7 2018-12-31
dtype: datetime64[ns]
daterng[daterng.dt.is_year_end]
Out[105]:
3 2017-12-31
7 2018-12-31
dtype: datetime64[ns]

以上关于dt的3种方法说明:

  • Series.dt.day_name():从日期判断出所处星期数;

  • Series.dt.quarter:从日期判断所处季节;

  • Series.dt.is_year_end:从日期判断是否处在年底;

其它方法也都是基于datetime的一些变换,并通过变换来查看具体微观或者宏观日期。

[i for i in dir(pd.Series.dt) if not i.startswith('_')]
Out[106]:
['ceil',
'components',
'date',
'day',
'day_name',
'dayofweek',
'dayofyear',
'days',
'days_in_month',
'daysinmonth',
'floor',
'freq',
'hour',
'is_leap_year',
'is_month_end',
'is_month_start',
'is_quarter_end',
'is_quarter_start',
'is_year_end',
'is_year_start',
'microsecond',
'microseconds',
'minute',
'month',
'month_name',
'nanosecond',
'nanoseconds',
'normalize',
'quarter',
'round',
'second',
'seconds',
'strftime',
'time',
'to_period',
'to_pydatetime',
'to_pytimedelta',
'total_seconds',
'tz',
'tz_convert',
'tz_localize',
'week',
'weekday',
'weekday_name',
'weekofyear',
'year']

三、cat对象的使用

  • Series数据类型:Category

在说cat对象的使用前,先说一下Category这个数据类型,它的作用很强大。虽然我们没有经常性的在内存中运行上g的数据,但是我们也总会遇到执行几行代码会等待很久的情况。使用Category数据的一个好处就是:可以很好的节省在时间和空间的消耗。下面我们通过几个实例来学习一下。

 

colors = pd.Series([
'periwinkle',
'mint green',
'burnt orange',
'periwinkle',
'burnt orange',
'rose',
'rose',
'mint green',
'rose',
'navy'
])
import sys
colors.apply(sys.getsizeof)
Out[109]:
0 59
1 59
2 61
3 59
4 61
5 53
6 53
7 59
8 53
9 53
dtype: int64

上面我们通过使用sys.getsizeof来显示内存占用的情况,数字代表字节数。

还有另一种计算内容占用的方法:memory_usage(),后面会使用。

现在我们将上面colors的不重复值映射为一组整数,然后再看一下占用的内存。

mapper = {v: k for k, v in enumerate(colors.unique())}
mapper
Out[111]: {'periwinkle': 0, 'mint green': 1, 'burnt orange': 2, 'rose': 3, 'navy': 4}
as_int = colors.map(mapper)
as_int
Out[113]:
0 0
1 1
2 2
3 0
4 2
5 3
6 3
7 1
8 3
9 4
dtype: int64
as_int.apply(sys.getsizeof)
Out[114]:
0 24
1 28
2 28
3 24
4 28
5 28
6 28
7 28
8 28
9 28
dtype: int64
  • 注:对于以上的整数值映射也可以使用更简单的pd.factorize()方法代替。

我们发现上面所占用的内存是使用object类型时的一半。其实,这种情况就类似于Category data类型内部的原理。

内存占用区别:Categorical所占用的内存与Categorical分类的数量和数据的长度成正比,相反,object所占用的内存则是一个常数乘以数据的长度。

下面是object内存使用和category内存使用的情况对比。

colors.memory_usage(index=False, deep=True)
Out[115]: 650
colors.astype('category').memory_usage(index=False, deep=True)
Out[116]: 495

上面结果是使用object和Category两种情况下内存的占用情况。我们发现效果并没有我们想象中的那么好。但是注意Category内存是成比例的,如果数据集的数据量很大,但不重复分类(unique)值很少的情况下,那么Category的内存占用可以节省达到10倍以上,比如下面数据量增大的情况:

manycolors = colors.repeat(10)
len(manycolors) / manycolors.nunique()
Out[118]: 20.0
manycolors.memory_usage(index=False, deep=True)
Out[119]: 6500
manycolors.astype('category').memory_usage(index=False, deep=True)
Out[120]: 585

可以看到,在数据量增加10倍以后,使用Category所占内容节省了10倍以上。

除了占用内存节省外,另一个额外的好处是计算效率有了很大的提升。因为对于Category类型的Series,str字符的操作发生在.cat.categories的非重复值上,而并非原Series上的所有元素上。也就是说对于每个非重复值都只做一次操作,然后再向与非重复值同类的值映射过去。

对于Category的数据类型,可以使用accessor的cat对象,以及相应的属性和方法来操作Category数据。

ccolors = colors.astype('category')
ccolors.cat.categories
Out[122]: Index(['burnt orange', 'mint green', 'navy', 'periwinkle', 'rose'], dtype='object')
ccolors.unique()
Out[123]:
[periwinkle, mint green, burnt orange, rose, navy]
Categories (5, object): [periwinkle, mint green, burnt orange, rose, navy]

实际上,对于开始的整数类型映射,我们可以先通过reorder_categories进行重新排序,然后再使用cat.codes来实现对整数的映射,来达到同样的效果。

ccolors.cat.reorder_categories(mapper).cat.codes
Out[124]:
0 0
1 1
2 2
3 0
4 2
5 3
6 3
7 1
8 3
9 4
dtype: int8

dtype类型是Numpy的int8(-127~128)。可以看出以上只需要一个单字节就可以在内存中包含所有的值。我们开始的做法默认使用了int64类型,然而通过pandas的使用可以很智能的将Category数据类型变为最小的类型。

让我们来看一下cat还有什么其它的属性和方法可以使用。下面cat的这些属性基本都是关于查看和操作Category数据类型的。

 

[i for i in dir(ccolors.cat) if not i.startswith('_')]
Out[125]:
['add_categories',
'as_ordered',
'as_unordered',
'categories',
'codes',
'ordered',
'remove_categories',
'remove_unused_categories',
'rename_categories',
'reorder_categories',
'set_categories']

但是Category数据的使用不是很灵活。例如,插入一个之前没有的值,首先需要将这个值添加到.categories的容器中,然后再添加值。

ccolors.iloc[5] = 'a new color'
# ...
ValueError: Cannot setitem on a Categorical with a new category, set the categories first
ccolors = ccolors.cat.add_categories(['a new color'])
ccolors.iloc[5] = 'a new color'

如果你想设置值或重塑数据,而非进行新的运算操作,那么Category类型不是那么有用。

Pandas系列(十六)- 你需要学会的骚操作的更多相关文章

  1. S3C2416裸机开发系列十六_sd卡驱动实现

    S3C2416裸机开发系列十六 sd卡驱动实现 象棋小子    1048272975 SD卡(Secure Digital Memory Card)具有体积小.容量大.传输数据快.可插拔.安全性好等长 ...

  2. 第一百二十六节,JavaScript,XPath操作xml节点

    第一百二十六节,JavaScript,XPath操作xml节点 学习要点: 1.IE中的XPath 2.W3C中的XPath 3.XPath跨浏览器兼容 XPath是一种节点查找手段,对比之前使用标准 ...

  3. 学习ASP.NET Core Razor 编程系列十六——排序

    学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...

  4. 为什么不让用join?《死磕MySQL系列 十六》

    大家好,我是咔咔 不期速成,日拱一卒 在平时开发工作中join的使用频率是非常高的,很多SQL优化博文也让把子查询改为join从而提升性能,但部分公司的DBA又不让用,那么使用join到底有什么问题呢 ...

  5. Pandas系列(六)-时间序列详解

    内容目录 1. 基础概述 2. 转换时间戳 3. 生成时间戳范围 4. DatetimeIndex 5. DateOffset对象 6. 与时间序列相关的方法 6.1 移动 6.2 频率转换 6.3 ...

  6. ES系列十六、集群配置和维护管理

    一.修改配置文件 1.节点配置 1.vim elasticsearch.yml # ======================== Elasticsearch Configuration ===== ...

  7. arcgis api for js入门开发系列十六迁徙流动图

    最近公司有个arcgis api for js的项目,需要用到百度echarts迁徙图效果,而百度那个效果实现是结合百度地图的,怎么才能跟arcgis api结合呢,网上搜索,终于在github找到了 ...

  8. arcgis api 3.x for js 入门开发系列十六迁徙流动图

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  9. WPF入门教程系列十六——WPF中的数据绑定(二)

    三.绑定模式 通过上一文章中的示例,学习了简单的绑定方式.在这里的示例,要学习一下绑定的模式,和模式的使用效果. 首先,我们来做一个简单示例,这个示例是根据ListBox中的选中项,去改变TextBl ...

随机推荐

  1. 5分钟了解TypeScript

    1.安装TypeScript 有两种方式安装TypeScript: Via npm 通过安装VS插件,更多可参见这里. 对于npm用户,可以直接使用下面的命令行安装: nmp install -g T ...

  2. Python基础——7面向对象高级编程

    实例与类动态添加方法 实例添加属性: def Student(object): pass s = Student() s.name = ‘syz’ 实例添加方法 from types import M ...

  3. 验证二叉搜索树的golang实现

    给定一个二叉树,判断其是否是一个有效的二叉搜索树. 一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也是二叉搜索树. ...

  4. Java程序设计与数据结构导论--读后感

    与我前面所读的<Java7基础教程>相比,此书不适合自学,更适合作为教材使用. 虽然此书完整覆盖了Java的知识点和数据结构的基础问题,并且对每个部分都做了基本说明.但是因为没有深入展开, ...

  5. (生活)Photoshop入门(不定时更新)

    我可能是想找个工作以外的事情做一下. 目标:我要自学网PhotoShop商业修图. 笔记: .图层 .1总结: 1.1.1图层就好像画画的一张纸,但是每一层又互不影响. 1.1.2图层蒙版(覆盖一层玻 ...

  6. HTMLCSS--案例| 超链接美化 | 模态框 | tab栏选项卡

    一.超链接美化 二.模态框 三.tab栏选项卡 -------------------------------------------- 一.超链接美化 <!DOCTYPE html> & ...

  7. 【Python 11】汇率兑换4.0(函数)

    1.案例描述 设计一个汇率换算程序,其功能是将美元换算成人民币,或者相反. 2.0增加功能:根据输入判断是人民币还是美元,进行相应的转换计算 3.0增加功能:程序可以一直运行,知道用户选择退出 4.0 ...

  8. 【Python 01】Python可以做什么

    Python学习未来方向: 1.数据分析 2.自然语言处理 3.社交网络分析 4.人工智能 5.深度学习 6.计算机视觉 7.网络爬虫 8.量化交易

  9. CF618F Double Knapsack 构造、抽屉原理

    传送门 首先,选取子集的限制太宽了,子集似乎只能枚举,不是很好做.考虑加强限制条件:将"选取子集"的限制变为"选取子序列"的限制.在接下来的讨论中我们将会知道: ...

  10. Neutron flat network 学习

    flat network 是不带 tag 的网络,要求宿主机的物理网卡直接与 linux bridge 连接,这意味着: 每个 flat network 都会独占一个物理网卡.   在 ML2 配置中 ...