题解

q<=1e6,询问非常多。而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询。

离线也是没有什么意义的,因为必须递推。

先翻译$f_0(n)$

$f_0(n)=\sum_d|n[(d,\frac{n}{d})=1]$

一个数的约数和约数的另一半互质,那么,必须意味着,对于n的每个质因子,要么全在d,要么全在n/d否则就不互质了,就是0

对于互质时,每个质因子有两种选择情况,

所以,f0就是$2^m$其中,m是n的质因子种类数。

然后还要处理fr的递推式。

发现,还是和n的约数有关,反过来考虑每个约数的贡献,发现每个约数会被计算两次,u,v各一次

而还要除以2,正好消掉

那么,其实$f_r(n)=\sum_{d|n}f_{r-1}(d)$

这个是什么呢?$f_r(n)=f_{r-1}*1$($*$表示卷积)

$f_0$是积性函数显然,

而卷积两侧是积性函数,那么卷积之后也是积性函数的。

所以,递推过去,$f_r$都是积性函数了。

所以,处理$f_r$可以把每个质因子分开考虑。

$f_r(n)=\Pi_{i=1}^k\space f_{r-1}(p_i^{q_i})$

$f_r(p_1^{q_1})=\sum_{d|{p_1^{q_1}}}f_{r-1}(d)=\sum_{k=1}^{q_1}f_{r-1}(p_1^{k})$

可以发现,如果递推到$f_0$的话,那么,就和质因子p1是什么,没有任何关系了。

所以,之后的取值,和p1是什么质因子,也没有关系。

只和p1的次数有关。

所以可以dp[i][j]第i层,次数为j的$f_i(j)$的值。

前缀和优化一下即可。

但是对于1e6次输入的数,怎么快速质因数分解呢?

假装你要线性筛素数,然后你可以顺便筛出mindiv(一个数的最小质因子)

然后,可以每次除掉mindiv,记录一下这个mindiv的次数。

即可利用mindiv,logn质因数分解

代码:

#include<bits/stdc++.h>
#define numb (ch^'0')
#define ri register int
using namespace std;
typedef long long ll;
const int N=+;
const int mod=1e9+;
int q,r,n;
int pri[N],cnt;
int mindiv[N];
ll f[N][],sum[];
bool vis[N];
void rd(int &x){
x=;char ch;
while(!isdigit(ch=getchar()));
for(x=numb;isdigit(ch=getchar());x=(x<<)+(x<<)+numb);
}
void sieve(){
mindiv[]=;//warning!!
for(int i=;i<=N-;i++){
if(!vis[i]){
pri[++cnt]=i;
mindiv[i]=i;
}
for(int j=;j<=cnt;j++){
if(pri[j]*i>N-) break;
vis[pri[j]*i]=;
mindiv[pri[j]*i]=pri[j];
if(i%pri[j]==) break;
}
}
}
int main(){
sieve();
f[][]=;
sum[]=;
for(int i=;i<=;i++) f[][i]=,sum[i]=sum[i-]+f[][i];
for(ri i=;i<=N-;i++){
for(int j=;j<=;j++){
f[i][j]=sum[j];
sum[j]=;
if(j)sum[j]=sum[j-];
(sum[j]+=f[i][j])%=mod;
}
}
int t;
rd(t);
while(t--){
rd(r),rd(n);
ll ans=;
while(n!=){
ll div=mindiv[n];
int cnt=;
while(mindiv[n]==div) cnt++,n/=mindiv[n];
(ans*=f[r][cnt])%=mod;
}
printf("%lld\n",ans);
}
return ;
} /*
Author: *Miracle*
Date: 2018/10/3 22:15:15
*/

总结:

1.对于1e6的询问,必然要考虑探究性质,O(1)处理询问。

2.积性函数的证明:

①从实际意义考虑,如$f_0$

②直接理性证明,如$f_r$

这个是利用了卷积的性质

有时要考虑的是分开质因子能不能处理。

CF757E Bash Plays with Functions的更多相关文章

  1. Codeforces 757 E Bash Plays with Functions

    Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...

  2. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

  3. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  4. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  5. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  6. CF 757 E Bash Plays with Functions —— 积性函数与质因数分解

    题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...

  7. 【codeforces 757E】Bash Plays with Functions

    [题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...

  8. [Codeforces 757E] Bash Plays with Functions (数论)

    题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90 题目: 题解 ...

  9. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

随机推荐

  1. windows下QT打包

    1.找到对应的MinGW命令,打开 2.进入exe目录 3.执行windeployqt XX.exe

  2. Git在商业项目中的使用流程

    一 引言 这一篇文章还是记录我在杭州工作的总结. 我刚来公司的时候,对Git的使用很头痛,因为在学校里面很少用这个东西,即使用,一般也只有一个分支,不会出现代码冲突和代码合并的情况.但是公司里面一个项 ...

  3. Windows 更快捷方便的安装软件,命令提示符上安装 Chocolatey

    在命令提示符上安装 Chocolatey @powershell -NoProfile -ExecutionPolicy unrestricted -Command "iex ((new-o ...

  4. USB初学(一)---USB-HID的初步认识【转】

    HID是一种USB通信协议,无需安装驱动就能进行交互,在学习HID之前,先来复习一下USB协议的相关内容. USB设备描述符-概述 当插入USB设备后,主机会向设备请求各种描述符来识别设备.那什么是设 ...

  5. 如何设置Oracle数据库客户端字符集以及系统中的NLS_LANG环境变量

    概述: 本地化是系统或软件运行的语言和文化环境.设置NLS_LANG环境参数是规定Oracle数据库软件本地化行为最简单的方式. NLS_LANG参数不但指定了客户端应用程序和Oracle数据库所使用 ...

  6. 闭包函数&回调函数

    闭包函数&回调函数 谈到回调函数,不得不提匿名函数;匿名函数,也叫闭包函数,也就是没有名字的函数,它可以单独存在,也可以将其赋值给某一个变量.so,先来看一下闭包函数. 闭包函数 php文档: ...

  7. 在Visual Studio 2017上配置Glut

    在Visual Studio 2017上配置Glut 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 在Visual Studio 2017上配置并使用 ...

  8. LivePhoto开发,你要知道的知识点

    前言 Apple从iPhone6s开始支持Live Photo.Live Photo 会录下拍照前后 1.5 秒所发生的一切,因此用户获得的不仅仅是一张精美照片,还有拍照前后时刻的动作和声音.具体的操 ...

  9. Ubuntu 14.04 结束支持该如何应对?

    Ubuntu 14.04 即将于 2019 年 4 月 30 日结束支持.这意味着在此日期之后 Ubuntu 14.04 用户将无法获得安全和维护更新. 你甚至不会获得已安装应用的更新,并且不手动修改 ...

  10. nginx与fastdfs配置详解与坑

    nginx与fastdfs配置详解与坑 环境 ubantu19.04 fastdfs-5.11 fastdfs-nginx-module-1.20 libfastcommon-1.0.39 nginx ...