题解

q<=1e6,询问非常多。而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询。

离线也是没有什么意义的,因为必须递推。

先翻译$f_0(n)$

$f_0(n)=\sum_d|n[(d,\frac{n}{d})=1]$

一个数的约数和约数的另一半互质,那么,必须意味着,对于n的每个质因子,要么全在d,要么全在n/d否则就不互质了,就是0

对于互质时,每个质因子有两种选择情况,

所以,f0就是$2^m$其中,m是n的质因子种类数。

然后还要处理fr的递推式。

发现,还是和n的约数有关,反过来考虑每个约数的贡献,发现每个约数会被计算两次,u,v各一次

而还要除以2,正好消掉

那么,其实$f_r(n)=\sum_{d|n}f_{r-1}(d)$

这个是什么呢?$f_r(n)=f_{r-1}*1$($*$表示卷积)

$f_0$是积性函数显然,

而卷积两侧是积性函数,那么卷积之后也是积性函数的。

所以,递推过去,$f_r$都是积性函数了。

所以,处理$f_r$可以把每个质因子分开考虑。

$f_r(n)=\Pi_{i=1}^k\space f_{r-1}(p_i^{q_i})$

$f_r(p_1^{q_1})=\sum_{d|{p_1^{q_1}}}f_{r-1}(d)=\sum_{k=1}^{q_1}f_{r-1}(p_1^{k})$

可以发现,如果递推到$f_0$的话,那么,就和质因子p1是什么,没有任何关系了。

所以,之后的取值,和p1是什么质因子,也没有关系。

只和p1的次数有关。

所以可以dp[i][j]第i层,次数为j的$f_i(j)$的值。

前缀和优化一下即可。

但是对于1e6次输入的数,怎么快速质因数分解呢?

假装你要线性筛素数,然后你可以顺便筛出mindiv(一个数的最小质因子)

然后,可以每次除掉mindiv,记录一下这个mindiv的次数。

即可利用mindiv,logn质因数分解

代码:

#include<bits/stdc++.h>
#define numb (ch^'0')
#define ri register int
using namespace std;
typedef long long ll;
const int N=+;
const int mod=1e9+;
int q,r,n;
int pri[N],cnt;
int mindiv[N];
ll f[N][],sum[];
bool vis[N];
void rd(int &x){
x=;char ch;
while(!isdigit(ch=getchar()));
for(x=numb;isdigit(ch=getchar());x=(x<<)+(x<<)+numb);
}
void sieve(){
mindiv[]=;//warning!!
for(int i=;i<=N-;i++){
if(!vis[i]){
pri[++cnt]=i;
mindiv[i]=i;
}
for(int j=;j<=cnt;j++){
if(pri[j]*i>N-) break;
vis[pri[j]*i]=;
mindiv[pri[j]*i]=pri[j];
if(i%pri[j]==) break;
}
}
}
int main(){
sieve();
f[][]=;
sum[]=;
for(int i=;i<=;i++) f[][i]=,sum[i]=sum[i-]+f[][i];
for(ri i=;i<=N-;i++){
for(int j=;j<=;j++){
f[i][j]=sum[j];
sum[j]=;
if(j)sum[j]=sum[j-];
(sum[j]+=f[i][j])%=mod;
}
}
int t;
rd(t);
while(t--){
rd(r),rd(n);
ll ans=;
while(n!=){
ll div=mindiv[n];
int cnt=;
while(mindiv[n]==div) cnt++,n/=mindiv[n];
(ans*=f[r][cnt])%=mod;
}
printf("%lld\n",ans);
}
return ;
} /*
Author: *Miracle*
Date: 2018/10/3 22:15:15
*/

总结:

1.对于1e6的询问,必然要考虑探究性质,O(1)处理询问。

2.积性函数的证明:

①从实际意义考虑,如$f_0$

②直接理性证明,如$f_r$

这个是利用了卷积的性质

有时要考虑的是分开质因子能不能处理。

CF757E Bash Plays with Functions的更多相关文章

  1. Codeforces 757 E Bash Plays with Functions

    Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...

  2. Codeforces757E.Bash Plays With Functions(积性函数 DP)

    题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...

  3. codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

    http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n ...

  4. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  5. CF 757E Bash Plays with Functions——积性函数+dp+质因数分解

    题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. ...

  6. CF 757 E Bash Plays with Functions —— 积性函数与质因数分解

    题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...

  7. 【codeforces 757E】Bash Plays with Functions

    [题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...

  8. [Codeforces 757E] Bash Plays with Functions (数论)

    题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90 题目: 题解 ...

  9. Bash Plays with Functions CodeForces - 757E (积性函数dp)

    大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...

随机推荐

  1. nodejs 使用 js 模块

    nodejs 使用 js 模块 Intro 最近需要用 nodejs 做一个爬虫,Google 有一个 Puppeteer 的项目,可以用它来做爬虫,有关 Puppeteer 的介绍网上也有很多,在这 ...

  2. AngularJS学习之旅—AngularJS 控制器(六)

    1.AngularJS 控制器 AngularJS 应用程序被控制器控制. ng-controller 指令定义了应用程序控制器. 控制器是 JavaScript 对象,由标准的 JavaScript ...

  3. python开发规范和(configparser、random模块)

    目录结构: bin:存放程序入口,程序启动文件. conf:存放配置文件,配置文件主要是一些全局变量,路径信息等. core:程序核心文件,不涉及到业务逻辑. app:存放和系统业务相关的逻辑. db ...

  4. Serverless架构

    什么是Serverless架构 Servlerless 架构是新兴的架构体系,在Serverless 架构中,开发者无需考虑服务器的问题,计算资源作为服务而不是服务器的概念出现,这样,开发者只需要关注 ...

  5. python import详解

    1.import作用 引入模块 2.import的特点 一个程序中,import的模块不会重复被引用,如: # test1.py import test2 print test2.attr # tes ...

  6. tian

    上次后来没继续在微信上聊,是因为快过年了,想趁那段时间结合年假做点东西.接下来阳历三四月份就受美国制裁.结果接下来制裁.fang. 16年的那次主要是生气,在一块儿 另外经济上也有问题. 我也想过不再 ...

  7. There Are Now 3 Apache Spark APIs. Here’s How to Choose the Right One

    See Apache Spark 2.0 API Improvements: RDD, DataFrame, DataSet and SQL here. Apache Spark is evolvin ...

  8. Jetson TX2(1)ubutu1604--安装Nvidia Linux驱动

    https://www.jianshu.com/p/c8ebe4aaa708 系统开机首次进入的是以nvidia用户登录的Ubuntu 命令行界面.Nvidia 驱动安装 通过sudo su 输入密码 ...

  9. 洛谷 P5020 货币系统

    题目描述 在网友的国度中共有$ n $种不同面额的货币,第 i种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为\(n\).面额数组为 \(a[1..n]\ ...

  10. 自己编写 EntityTypeConfiguration

    1.新建类库 EFCore.EntityTypeConfig ,安装nuget  PM> Install-Package Microsoft.EntityFrameworkCore 2.新建接口 ...