Barber paradox
According to Wikipedia, the well known barber paradox states like this:
The barber is the “one who shaves all those, and those only, who do not shave themselves.” The question is, does the barber shave himself?
Actually, this paradox is directly related to the second part of Theorem 7.8 in James Munkres “Topology”. This theorem says:
Let \(A\) be a set. There is no injective map \(f: \mathcal{P}(A) \rightarrow A\), and there is no surjective map \(g: A \rightarrow \mathcal{P}(A)\).
Here \(\mathcal{P}(A)\) represents the power set of \(A\).
Mapped to the barber paradox, this theorem can be dissected as below:
Let the set \(A\) represent all the people involved in the paradox. Let \(a\) be any one of the barbers and the surjective map \(g\) associate \(a\) with a group of people \(C \in \mathcal{P}(A)\), who do not shave themselves and are \(a\)’s customers. Then, let \(B\) be a subset of \(A\) including all the barbers. Because \(g\) is surjective, this group of barbers \(B\) must also have its own pre-image, which is a singleton \(\{a_0\}\) in \(A\). According to the definition of \(g\), all the barbers in group \(B\) do not shave themselves and the only people \(a_0\) in the singleton is also a barber who provides service to all barbers in \(B\). And here we have the paradox: on one hand, because the barber \(a_0\) belongs to the subset \(B\) so \(a_0\) does not shave himself; on the other hand, the rule of assignment for the surjective map \(g\) ensures \(a_0\) really shaves himself.
Although we have an unsolvable paradox here, there is no need to bear any qualms. In reality, the barbers in \(B\) do not need a high-level barber’s barber or a barber from another city as the \(a_0\). They can simply provide mutual help to each other.
Barber paradox的更多相关文章
- Codeforces 711E ZS and The Birthday Paradox
传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- URAL 1774 A - Barber of the Army of Mages 最大流
A - Barber of the Army of MagesTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/v ...
- 教程-(SQL DBE、ADO连接)+(Firebird火鸟+DbExpress)+(VF DBF数据库)+(DB Paradox)
DBE 连接SQL Server显然用ADO或DBEXPRESS更有优势,起码连接起来比较方便. BDE的话可以用如下方法:(以下以Delphi7为例,其它版本的DELPHI请自己摸索一下,不过基本相 ...
- 数学概念——F 概率(经典问题)birthday paradox
F - 概率(经典问题) Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit S ...
- ZS and The Birthday Paradox
ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...
- Codeforces 711E ZS and The Birthday Paradox 数学
ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...
- C# 连接Paradox DB
Paradox数据库是一个成名于15年前的数据库,那时候Borland公司还存在.最近客户提出需求,要在一套用了12年+的应用程序上作些功能更改.这套应用程序使用Delphi+Paradox数据库. ...
随机推荐
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
- fiddler软件测试——Fiddler抓取https设置详解(图文)(摘抄)
随笔- 8 文章- 0 评论- 0 fiddler软件测试——Fiddler抓取https设置详解(图文) 强烈推荐(原创亲测)!!!Fiddler抓取https设置详解(图文)转 本文主要说 ...
- Ueditor注意的地方
复制粘贴内容到编辑器上时,一些标签的属性会被过滤,在config.js里添加白名单配置项,例如: whitList: { a: ['target', 'href', 'title', 'class', ...
- Vivado如何使用命令行创建工程
前言 vivado中采用TCL脚本语言来作为其命令解释语言.除去可以普通的图形界面流程还可以使用tcl脚本创建工程并导入相关源文件. 流程 1.首先还是要打开vivado图形主界面. 2.在某路径 ...
- 记录一次Oracle注入绕waf
这个注入挺特殊的,是ip头注入.我们进行简单的探测: 首先正常发起一次请求,我们发现content-type是76 探测注入我习惯性的一个单引号: 一个单引号我发现长度还是76 我开始尝试单引号,双引 ...
- 为什么会有这么多python?其实python并不是编程语言!
Python是出类拔萃的 然而,这是一句非常模棱两可的话.这里的"Python"到底指的是什么? 是Python的抽象接口吗?是Python的通用实现CPython吗(不要把CPy ...
- Vue(小案例_vue+axios仿手机app)_go实现退回上一个路由
一.前言 this.$router.go(-1)返回上级路由 二.主要内容 1.小功能演示: 2.组件之间的嵌套关系为: 3.具体实现 (1)由于这种返回按钮在每个页面中的结构都是一样的,只是里面的数 ...
- Linux记录-grafana opentsdb安装
wget https://dl.grafana.com/oss/release/grafana-6.1.4-1.x86_64.rpm sudo yum localinstall grafana-6.1 ...
- javax.websocket.DeploymentException: Multiple Endpoints may not be deployed to the same path [/websocket/{sid}] : existing endpoint was class com.sanyi.qibaobusiness.framework.webSocket.WebSocketServe
报错: javax.websocket.DeploymentException: Multiple Endpoints may not be deployed to the same path [/w ...
- Python字节数组【bytes/bytearray】
bytes >>> type(b'xxxxx') <class 'bytes'> >>> type('xxxxx') <class 'str'&g ...