According to Wikipedia, the well known barber paradox states like this:

The barber is the “one who shaves all those, and those only, who do not shave themselves.” The question is, does the barber shave himself?

Actually, this paradox is directly related to the second part of Theorem 7.8 in James Munkres “Topology”. This theorem says:

Let \(A\) be a set. There is no injective map \(f: \mathcal{P}(A) \rightarrow A\), and there is no surjective map \(g: A \rightarrow \mathcal{P}(A)\).

Here \(\mathcal{P}(A)\) represents the power set of \(A\).

Mapped to the barber paradox, this theorem can be dissected as below:

Let the set \(A\) represent all the people involved in the paradox. Let \(a\) be any one of the barbers and the surjective map \(g\) associate \(a\) with a group of people \(C \in \mathcal{P}(A)\), who do not shave themselves and are \(a\)’s customers. Then, let \(B\) be a subset of \(A\) including all the barbers. Because \(g\) is surjective, this group of barbers \(B\) must also have its own pre-image, which is a singleton \(\{a_0\}\) in \(A\). According to the definition of \(g\), all the barbers in group \(B\) do not shave themselves and the only people \(a_0\) in the singleton is also a barber who provides service to all barbers in \(B\). And here we have the paradox: on one hand, because the barber \(a_0\) belongs to the subset \(B\) so \(a_0\) does not shave himself; on the other hand, the rule of assignment for the surjective map \(g\) ensures \(a_0\) really shaves himself.

Although we have an unsolvable paradox here, there is no need to bear any qualms. In reality, the barbers in \(B\) do not need a high-level barber’s barber or a barber from another city as the \(a_0\). They can simply provide mutual help to each other.

Barber paradox的更多相关文章

  1. Codeforces 711E ZS and The Birthday Paradox

    传送门 time limit per test 2 seconds memory limit per test 256 megabytes input standard input output st ...

  2. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  3. URAL 1774 A - Barber of the Army of Mages 最大流

    A - Barber of the Army of MagesTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/v ...

  4. 教程-(SQL DBE、ADO连接)+(Firebird火鸟+DbExpress)+(VF DBF数据库)+(DB Paradox)

    DBE 连接SQL Server显然用ADO或DBEXPRESS更有优势,起码连接起来比较方便. BDE的话可以用如下方法:(以下以Delphi7为例,其它版本的DELPHI请自己摸索一下,不过基本相 ...

  5. 数学概念——F 概率(经典问题)birthday paradox

    F - 概率(经典问题) Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit S ...

  6. ZS and The Birthday Paradox

    ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...

  7. Codeforces 711E ZS and The Birthday Paradox 数学

    ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...

  8. Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学

    E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...

  9. C# 连接Paradox DB

    Paradox数据库是一个成名于15年前的数据库,那时候Borland公司还存在.最近客户提出需求,要在一套用了12年+的应用程序上作些功能更改.这套应用程序使用Delphi+Paradox数据库. ...

随机推荐

  1. [模板] CDQ分治&&BZOJ3262:陌上花开

    简介 CDQ分治是分治的一种, 可以看做归并排序的扩展, 利用离线将一些 \(O(n)\) 的暴力优化到 \(O(log n)\). 它可以用来顶替一些高级(log)数据结构等. 一般地, CDQ分治 ...

  2. l2tp pptp相关的一些记录

    添加用户名和密码 echo "user l2tpd password *">>/etc/ppp/chap-secrets /etc/ipsec.conf dpddela ...

  3. Time travel HDU - 4418(高斯消元)

    Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to ...

  4. (二叉树 递归) leetcode 106. Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  5. maven 构建参数和命令

    mvn常用参数 mvn -e 显示详细错误 mvn -U 强制更新snapshot类型的插件或依赖库(否则maven一天只会更新一次snapshot依赖) mvn -o 运行offline模式,不联网 ...

  6. CMDB资产管理系统开发【day26】:admin action

    本节目标 审核写到数据库,我就单独写一个如下的 页面 单机go后就跳转到如下图界面,我们这节课的目标就是写一个这样的页面 asset\admin.py部分代码 注释如下: class NewAsset ...

  7. BeautifulSoup解析模块

    简介: Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式. 使用 from bs4 impor ...

  8. 第十三节:Lambda、linq、SQL的相爱相杀(2)

    一. Linq开篇 1.Where用法 linq中where的用法与SQL中where的用法基本一致. #region 01-where用法 { //1. where用法 //1.1 查询账号为adm ...

  9. [简洁]JavaScript中添加、移除、移动、复制、创建和查找节点元素

    查找: document.getElementsByTagName通过标签名获取元素,不论有多少个都返回元素集合. document.getElementsByClassName通过类名获取元素,同上 ...

  10. sql server 中用于排名的三个函数 row_number() ,RANK() 和 DENSE_RANK()

    row_number()  ,RANK() 和  DENSE_RANK()  三个配合over()  使用排名 只是只是计算方式不一样,语法基本一样 语法: ROW_NUMBER() OVER (OR ...