NumPy库

NumPy数组对象
NumPy数据类型
数组的索引
数组的切片
数组的组合
数组的分割
数组的属性

NumPy数组对象

NumPy数据类型

#numpy数据类型
print "In: float64(42)"
print np.float64(42) print "In: int8(42.0)"
print np.int8(42.0) print "In: bool(42)"
print np.bool(42) print np.bool(0) print "In: bool(42.0)"
print np.bool(42.0) print "In: float(True)"
print np.float(True)
print np.float(False) print "In: arange(7, dtype=uint16)"
print np.arange(7, dtype=np.uint16) print "In: int(42.0 + 1.j)"

数据类型

# 数据类型转换
arr = np.array([1, 2, 3, 4, 5])
arr.dtype
float_arr = arr.astype(np.float64)
float_arr.dtype arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
arr
arr.astype(np.int32) numeric_strings = np.array(['1.25', '-9.6', ''], dtype=np.string_)
numeric_strings.astype(float)

数据类型转换

import numpy as np
a = np.array([[1,2],[3,4]])
print(a.dtype.byteorder) #= print(a.dtype.itemsize) #

数据类型对象

print np.arange(7, dtype='f')
print np.arange(7, dtype='D') print np.dtype(float) print np.dtype('f') print np.dtype('d') print np.dtype('f8') print np.dtype('Float64')

类型代码

#dtype类的属性
t = np.dtype('Float64') print t.char print t.type print t.str #创建自定义数据类型
t = np.dtype([('name', np.str_, 40), ('numitems', np.int32), ('price', np.float32)])
print t print t['name'] itemz = np.array([('Meaning of life DVD', 42, 3.14), ('Butter', 13, 2.72)], dtype=t) print itemz[1]

dtype类的属性、创建自定义数据类型

数组操作

数组与标量之间的运算

#创建多维数组
m=np.array([np.arange(2),np.arange(2)])
print(m)
print(m.shape)
print(m.dtype)
#数组与标量的运算
arr = np.array([[1., 2., 3.], [4., 5., 6.]])
arr
arr * arr

       结果: array([[ 1., 4., 9.],
          [16., 25., 36.]])

arr - arr

1 / arr
arr ** 0.5

数组的索引

#布尔型索引
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
data = randn(7, 4)
names
data names == 'Bob'
data[names == 'Bob'] data[names == 'Bob', 2:]
data[names == 'Bob', 3] names != 'Bob'
data[-(names == 'Bob')] mask = (names == 'Bob') | (names == 'Will')
mask
data[mask] data[data < 0] = 0
data data[names != 'Joe'] = 7
data

布尔型索引

#花式索引
arr = np.empty((8, 4))
for i in range(8):
arr[i] = i
arr arr[[4, 3, 0, 6]] arr[[-3, -5, -7]] arr = np.arange(32).reshape((8, 4))
arr
arr[[1, 5, 7, 2], [0, 3, 1, 2]] arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]] arr[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])]

花式索引

数组的切片

#多维数组的切片与索引
b = np.arange(24).reshape(2,3,4) #生成二维数组,三行四列 print b.shape print b
#array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]) print b[0,0,0] print b[:,0,0] print b[0] print b[0, :, :] print b[0, ...] print b[0,1] print b[0,1,::2] print b[...,1] print b[:,1] print b[0,:,1] print b[0,:,-1] print b[0,::-1, -1] print b[0,::2,-1] print b[::-1] s = slice(None, None, -1)
print b[(s, s, s)]

数组的组合

#数组转置
arr = np.arange(15).reshape((3, 5))
arr
arr.T #改变数组的维度
b = np.arange(24).reshape(2,3,4) print b print b.ravel() print b.flatten() b.shape = (6,4) print b print b.transpose() b.resize((2,12)) print b

数组转置、改变数组的维度

#组合数组
a = np.arange(9).reshape(3,3) print a b = 2 * a print b print np.hstack((a, b)) 水平组合 print np.concatenate((a, b), axis=1) print np.vstack((a, b)) 垂直组合 print np.concatenate((a, b), axis=0) print np.dstack((a, b)) 深度组合 oned = np.arange(2) print oned twice_oned = 2 * oned print twice_oned print np.column_stack((oned, twice_oned)) 列组合 print np.column_stack((a, b)) print np.column_stack((a, b)) == np.hstack((a, b)) print np.row_stack((oned, twice_oned)) print np.row_stack((a, b)) print np.row_stack((a,b)) == np.vstack((a, b))

组合数组

数组的分割

#数组的分割
a = np.arange(9).reshape(3, 3) print a print np.hsplit(a, 3) 水平分割 print np.split(a, 3, axis=1) print np.vsplit(a, 3) 垂直分割 print np.split(a, 3, axis=0) c = np.arange(27).reshape(3, 3, 3) print c print np.dsplit(c, 3)

数组的分割

数组的属性

#数组的属性
b=np.arange(24).reshape(2,12)
b.ndim 维度
b.size 数组元素总个数
b.itemsize 元素占的字节数
b.nbytes b = np.array([ 1.+1.j, 3.+2.j])
b.real 实部
b.imag 虚部 b=np.arange(4).reshape(2,2)
b.flat
b.flat[2] #数组的转换
b = np.array([ 1.+1.j, 3.+2.j])
print b print b.tolist() 转化成python中的列表 print b.tostring() print np.fromstring('\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x08@\x00\x00\x00\x00\x00\x00\x00@', dtype=complex) print np.fromstring('20:42:52',sep=':', dtype=int) print b print b.astype(int) print b.astype('complex')

数组的属性

AI数据分析(二)的更多相关文章

  1. SPSS数据分析—二分类Logistic回归模型

    对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...

  2. Python数据分析(二): Numpy技巧 (1/4)

    In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  

  3. Python数据分析(二): Numpy技巧 (2/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  4. Python数据分析(二): Numpy技巧 (3/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  5. Python数据分析(二): Numpy技巧 (4/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   第一部分: ht ...

  6. 【python数据分析实战】电影票房数据分析(二)数据可视化

    目录 图1 每年的月票房走势图 图2 年票房总值.上映影片总数及观影人次 图3 单片总票房及日均票房 图4 单片票房及上映月份关系图 在上一部分<[python数据分析实战]电影票房数据分析(一 ...

  7. Python+Requests+Bs4(解析)爬取某诗词信息(数据分析二)

    1.环境安装 - 需要将pip源设置为国内源,阿里源.豆瓣源.网易源等 - windows (1)打开文件资源管理器(文件夹地址栏中) (2)地址栏上面输入 %appdata% (3)在这里面新建一个 ...

  8. [USB波形分析] 全速USB波形数据分析(二)

    在上一篇文章全速USB波形数据分析(一)介绍了全速USB的数据包(Packet)的组成,数据的类型等基本知识.这篇文章介绍USB的几种传输方式 事务(Transaction) USB协议定义了三种不同 ...

  9. Python数据分析(二): Pandas技巧 (1)

    第一部分: ipython http://www.cnblogs.com/cgzl/p/7623347.html 第二部分: numpy http://www.cnblogs.com/cgzl/p/7 ...

随机推荐

  1. Ubuntu 系统安装详解 19.04最新版本

    Ubuntu 19.04版本系统安装详解 1 .镜像的下载 推荐 阿里云镜像下载 2.安装 1.1.新建虚拟机 注意硬件的兼容性问题 当前只有5.x可以用,其他兼容各位可以尝试下,我也都试过,但只有5 ...

  2. vue mock自己总结

    cli安装mock模块 npm   install  mockjs 创建mock文件夹 配置及创建文件 当后端写好真实接口以后,我们只需删掉创建的mock.js文件和在main.js中导入假数据的那行 ...

  3. Shell命令-文件及内容处理之head、tail

    文件及内容处理 - head.tail 1. head:显示文件内容头部 head命令的功能说明 head 命令用于显示文件头部内容,默认执行 head 命令会输出文件开头的 10 行. head命令 ...

  4. python基础----特性(property)、静态方法(staticmethod)、类方法(classmethod)、__str__的用法

    http://www.cnblogs.com/wangyongsong/p/6750454.html#_label0

  5. 在本机使用虚拟机安装一个linux系统,并搭建ftp服务器

    一.Linux基础使用:linux服务器环境搭建(FTP服务器), 在本机使用虚拟机安装一个linux系统,并搭建ftp服务器,要求能使用ftp服务将本机文件到保存linux虚拟机上 资料: VMwa ...

  6. ueditor 插件集成到 xadmin 中的相关操作

    安装 点击这里下载源码包 在相关的虚拟环境下安装源码方式安装 切入解压后路径进行 python setup.py install 注册 安装成功按照普通app一般注册在 django 程序的app 中 ...

  7. 仙人掌&圆方树学习笔记

    仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图 ...

  8. django auth permission

    django 提供内置view处理登陆和退出. 查看django.contrib.auth源码,主要查看三个函数authenticate,login,logout. authenticate(requ ...

  9. 针对监控摄像机(海康、大华等)录像 .h264 文件的流媒体播放设计

    监控摄像机(海康.大华等)内部带的录像功能一般录制的是h264文件,这种文件格式简单的把每一帧h264字节数据保存到文件里. 实际使用中,可能需要对特定录像进行反复检测,以训练.改进视频检测算法的准确 ...

  10. MySQL实战45讲学习笔记:日志系统(第二讲)

    一.重要的日志模块:redo log 1.通过酒店掌柜记账思路刨析redo log工作原理 2.InnoDB 的 redo log 是固定大小的 只要赊账记录在了粉板上或写了账本上,之后即使掌柜忘记了 ...