http://acm.xidian.edu.cn/problem.php?id=1158

解题关键:此题注意将$\sum\limits_{i = 0}^x {C_x^iC_y^{i + k}}$转化为$C_{x + y}^{x + k}$

利用二项式定理,

一方面,

${(1 + a)^y}{(1 + \frac{1}{a})^x}$的${a^k}$项的系数,第一个二项式的${a^j}$的系数$C_y^j$,第二个二项式的${a^{ - i}}$系数为$C_x^i$,令$j - i = k$,$j = i + k$,即$\sum\limits_{i = 0}^x {C_x^iC_y^{i + k}}$

另一方面,

${(1 + a)^y}{(1 + \frac{1}{a})^x} = {(1 + a)^{x + y}}{a^{ - x}}$,此时${a^k}$项的系数为$C_{x + y}^{x + k}$,得证。

1、打表

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
ll x,y,k;
ll fac[],inv[]; ll mod_pow(ll x,ll n,ll mod){
ll res=;
while(n){
if(n&) res=res*x%mod;
n>>=;
x=x*x%mod;
}
return res;
} ll Inv(ll x){
return mod_pow(x,mod-,mod);
} int main(){
fac[]=;
for(int i=;i<=;i++) fac[i]=fac[i-]*i%mod;//预处理一下,阶乘
inv[]=mod_pow(fac[],mod-,mod);//Fac[N]^{MOD-2}
for(int i=-;i>=;i--) inv[i]=inv[i+]*(i+)%mod; while(~scanf("%lld%lld%lld",&x,&y,&k)){
if(y==k) printf("1\n");
else if(y<k) printf("0\n");
// else printf("%lld\n",fac[x+y]*inv(fac[x+k])%mod*inv(fac[y-k])%mod);
else printf("%lld\n",(fac[x+y]%mod*inv[x+k]%mod*inv[y-k]%mod+mod)%mod);
}
return ;
}

2、打表+逆元实现

为什么是$n{!^{\bmod  - 2}}$

$n{!^{p - 2}}*n! = n{!^{p - 1}} = 1\bmod {\rm{ p;}}$(费马小定理)p为质数,此题中即为mod

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
ll x,y,k;
ll fac[],inv[]; ll mod_pow(ll x,ll n,ll mod){
ll res=;
while(n){
if(n&) res=res*x%mod;
n>>=;
x=x*x%mod;
}
return res;
} ll Inv(ll x){
return mod_pow(x,mod-,mod);
} int main(){
fac[]=;
for(int i=;i<=;i++) fac[i]=fac[i-]*i%mod;//预处理一下,阶乘
//inv[2000000]=mod_pow(fac[2000000],mod-2,mod);//Fac[N]^{MOD-2}
//for(int i=2000000-1;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod; while(~scanf("%lld%lld%lld",&x,&y,&k)){
if(y==k) printf("1\n");
else if(y<k) printf("0\n");
else printf("%lld\n",fac[x+y]*Inv(fac[x+k])%mod*Inv(fac[y-k])%mod);
//else printf("%lld\n",(fac[x+y]%mod*inv[x+k]%mod*inv[y-k]%mod+mod)%mod);
}
return ;
}

[xdoj1158]阶乘求逆元(常用于求组合数)的更多相关文章

  1. HNU 12933 Random Walks Catalan数 阶乘求逆元新技能

    一个Catalan数的题,打表对每个数都求一次逆元会T,于是问到了一种求阶乘逆元的打表新方法. 比如打一个1~n的阶乘的逆元的表,假如叫inv[n],可以先用费马小定理什么的求出inv[n],再用递推 ...

  2. 扩展gcd求逆元

    当模数为素数时可以用费马小定理求逆元. 模数为合数时,费马小定理大部分情况下失效,此时,只有与模数互质的数才有逆元(满足费马小定理的合数叫伪素数,讨论这个问题就需要新开一个博客了). (对于一个数n, ...

  3. 求组合数、求逆元、求阶乘 O(n)

    在O(n)的时间内求组合数.求逆元.求阶乘.·.· #include <iostream> #include <cstdio> #define ll long long ;// ...

  4. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  5. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  6. 牛客小白月赛14 -B (逆元求组合数)

    题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...

  7. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  8. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  9. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

随机推荐

  1. 2django 视图与网址进阶

    一.在网页中做加减法 采用/add/?a=11&b=22这样get方法进行 django-admin.py startproject zqxt_views cd zqxt_views pyth ...

  2. php关于<<<的用法

    Heredoc技术,在正规的PHP文档中和技术书籍中一般没有详细讲述,只是提到了这是一种Perl风格的字符串输出技术.但是现在的一些论坛程序,和部分文章系统,都巧妙的使用heredoc技术,来部分的实 ...

  3. 通过代码设置资源名字,为打包AssetBundle做准备,以及新打包系统

    核心代码就是  importer.assetBundleName = name;  但是在这之前,我们需要超找到具体的资源,我们当然是不希望一个一个手动去查找.如果我选择一个文件夹,就可以查找到里边所 ...

  4. mysql查看和设置timeout 和批量杀死链接进程

    查看的语句 show global variables like "%timeout%"; 结果: +-----------------------------+--------- ...

  5. 通用jquery页面验证

    页面通过给input 标签设置样式或者属性,即可实现所有页面的验证,customValidate方法并支持自己补充验证! 验证包括:必输项,只能输入数字, 输入数字并设定小数最大位数,下拉框必选,复选 ...

  6. beans.factory.BeanCreationException beans.factory.annotation.Autowired(required=true)

    主要是这三个方面排查: 1,注入写成这样 @Autowired   private BrandServiceImpl      brandServiceImpl; 2,jar冲突,在pom.xml中 ...

  7. js 定义hash类

    // JavaScript Documentfunction HashTable(){    this._hash={};    this._count=0;            /**    *添 ...

  8. 关键字volidate和transient(转)

    Volatile修饰的成员变量在每次被线程访问时,都强迫从主内存中重读该成员变量的值.而且,当成员变量发生变化时,强迫线程将变化值回写到主内存.这样在任何时刻,两个不同的线程总是看到某个成员变量的同一 ...

  9. web网页打印的方法(浏览器通用)

    Web打印组件jatoolsPrinter 应用web化,不论对开发商,还是对用户来说,实在是一种很经济的选择,因为基于 web的应用,客户端的规则很简单,容易学习,容易维护,容易发布.但对程序员来说 ...

  10. hdu-5867 Water problem(水题)

    题目链接: Water problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...