题目大意:输入n,代表有n种数,接下来n个数代表n种数,再接下来n个数代表每种数有多少个,在输入K,代表用这些数要加成的和

问你是否能加为K,能输出yes,不能输出no

这是一个典型的多重背包问题,可以用dp来求解,。但是如何定义递推关系会影响到最终的复杂度,首先我们先看一下如下定义:

dp[i+1][j];=用前i种数能否加成和为j

为了用前i种数加成j,也就需要能用前i-1种数字加成j,j-a[i],···,j-mi*a[i],中的某一种,由此我们可以定义如下递推关系

dp[i+1][j]=(0<=k<=mi,且k*a[i]<=j时,存在使dp[i][j-k*a[i]]为真的k;

看代码

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
#define INF 0x3f3f3f
bool dp[][];
int main()
{
memset(dp,false,sizeof(dp));
dp[][]=true;//赋初值
int n,s;
int a[],b[];
cin>>n;
for(int i=;i<n;i++)
{
cin>>a[i];
}
for(int i=;i<n;i++)
cin>>b[i];
cin>>s;
//for(int i=;i<n;i++)
// cout<<a[i]<<' '<<b[i]<<endl;
for(int i=;i<n;i++)
{
for(int j=;j<=s;j++)
{
for(int k=;k<=b[i]&&k*a[i]<=j;k++)
{
dp[i+][j]|=dp[i][j-k*a[i]];//注意这里的或运算,代表有一个为真则为真
}
}
}
//for(int i=;i<=s;i++)
// cout<<dp[n][i]<<' ';
if(dp[n][s])
cout<<"yes"<<endl;
else
cout<<"no"<<endl;
return ;
}

上面这个算法的复杂度是比较大,并不够好。一般用dp求取bool 结果的话会有不少浪费,同样的复杂度通常能获得更多的信息

在这个问题中,我们不光求出能否得到目标的和数,同时把得到时a[i]这个数还剩多少个计算出来,这样就可以减少复杂度

dp[i+][j]:=用前i种数加和得到j时,第i种数还剩多少个(不能加的情况为-1)

按照如上所述的递推关系,这样如果前i-1个数加能得到j的话,第i个数就可以留下b[i]个了,此外,前i种数加和出j-a[i]时第i种数还剩k(k>0)个的话

,用这i种数加和为j时就能剩k-1个了,由此我们可以得出如下递推式:

dp[i+1][j]=b[i]     (dp[i][j]>=0)

dp[i+1][j]=-1       (j<a[i]||dp[i_1][j-a[i]]<=0)

dp[i+1][j]=dp[i+1][j-a[i]]-1     (其它)

看代码

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
#define INF 0x3f3f3f
int dp[][];
int main()
{
memset(dp,-,sizeof(dp));
dp[][]=;//赋初值
int n,s;
int a[],b[];
cin>>n;
for(int i=;i<n;i++)
{
cin>>a[i];
}
for(int i=;i<n;i++)
cin>>b[i];
cin>>s;
for(int i=;i<n;i++)
{
for(int j=;j<=s;j++)
{
if(dp[i][j]>=)
dp[i+][j]=b[i];
else if(j<a[i]||dp[i+][j-a[i]]<=)
dp[i+][j]=-;
else
dp[i+][j]=dp[i+][j-a[i]]-; }
}
if(dp[n][s]>=)
cout<<"yes"<<endl;
else
cout<<"no"<<endl;
return ;
}

题目大意:有一个长度为n的序列,a[0],a[1]···a[n-1],请求出这个序列中最长的上升子序列的长度,上升子序列可以不连续,任意i<j,a[i]<a[j]

限制条件:1<=n<=1000   1<=a[i]<=1000000

首先我们建立递推关系

定义dp[i]=:以a[i]为末尾的最长上升子序列的长度

以a[i]为末尾的上升子序列是:

只包含a[i]的子序列

在满足j<i并且a[j]<a[i]的以a[j]为结尾的上升子序列追加上a[i]后得到的子序列

这二者之一。这样我们就能得到如下递推关系

dp[i]=max(1,dp[j]+1)  j<i并且a[j]<a[i]

使用这一递推公式可以在O(n^2)时间内解决问题

看代码

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
#define INF 0x3f3f3f
int main()
{
int n,ans=;
int a[];
int dp[];
memset(dp,,sizeof(dp));
cin>>n;
for(int i=;i<n;i++)
{
cin>>a[i];
}
for(int i=;i<n;i++)
{
dp[i]=;
for(int j=;j<i;j++)
{
if(a[j]<a[i])
dp[i]=max(dp[i],dp[j]+);
}
ans=max(ans,dp[i]);
}
cout<<ans<<endl;
return ;
}

此外还可以定义其它的递推关系。前面我们利用do求取针对最末尾的元素的最长的子序列。如果子序列

长度相同,那么最末尾的元素较小的在之后会更加有优势,所以我们反过来用dp针对长度相同情况下最小

的末尾元素进行求解

dp[i]:=长度为i+1的上升子序列中末尾元素的最小值

最开始全部dp[i]的值都初始化为为INF。然后由前到后逐个考虑数组的元素,对于每个a[j],如果i=0或者dp[i-1]<a[j]的话,就用dp[i]=min(dp[i],a[j])进行更新。这里如果看不懂就自己拿抄稿本走一遍,就一清二楚了。最终找出使得dp[i]<INF的最大i+1就是结果了。这个dp直接实现的话,能够与

前面的方法一样在O(n^2)的时间内给出结果,但是这一算法还可以进一步优化。 首先dp数组里除了INF之外是单调递增的,所以可以知道对于

每一个a[j]最多只需要一次更新。对于这次更新在什么位子,不必逐个遍历,可以利用二分搜索,这样就可以在O(nlogn)的时间内求出结果

复杂度O(nlogn)

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
#define INF 0x3f3f3f
int main()
{
int n;
int a[];
int dp[];
cin>>n;
fill(dp,dp+n,INF);
for(int i=;i<n;i++)
{
cin>>a[i];
}
for(int i=;i<n;i++)
{
*lower_bound(dp,dp+n,a[i])=a[i];
}
cout<<lower_bound(dp,dp+n,INF)-dp<<endl;
return ;
}

上面代码中使用了lower_bound这个STL函数。这个函数从已排好序的序列a中利用二分搜索找出满足a[i]>=k的最小的a[i]的指针。

多重背包(dp专题)的更多相关文章

  1. luogu||P1776||宝物筛选||多重背包||dp||二进制优化

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  2. POJ 1742 Coins 【多重背包DP】

    题意:有n种面额的硬币.面额.个数分别为A_i.C_i,求最多能搭配出几种不超过m的金额? 思路:dp[j]就是总数为j的价值是否已经有了这种方法,如果现在没有,那么我们就一个个硬币去尝试直到有,这种 ...

  3. 【bzoj1531】[POI2005]Bank notes 多重背包dp

    题目描述 Byteotian Bit Bank (BBB) 拥有一套先进的货币系统,这个系统一共有n种面值的硬币,面值分别为b1, b2,..., bn. 但是每种硬币有数量限制,现在我们想要凑出面值 ...

  4. DZY Loves Math II:多重背包dp+组合数

    Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...

  5. hdu 2844 Coins (多重背包+二进制优化)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...

  6. 【bzoj4182】Shopping 树的点分治+dfs序+背包dp

    题目描述 给出一棵 $n$ 个点的树,每个点有物品重量 $w$ .体积 $c$ 和数目 $d$ .要求选出一个连通子图,使得总体积不超过背包容量 $m$ ,且总重量最大.求这个最大总重量. 输入 输入 ...

  7. HDU - 1059 背包dp

    题目: 有两个小朋友想要平分一大堆糖果,但他们不知道如何平分需要你的帮助,由于没有spj我们只需回答能否平分即可. 糖果大小有6种分别是1.2.3.4.5.6,每种若干颗,现在需要知道能不能将这些糖果 ...

  8. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  9. DP大作战——多重背包

    题目描述 在之前的上机中,零崎已经出过了01背包和完全背包,也介绍了使用-1初始化容量限定背包必须装满这种小技巧,接下来的背包问题相对有些难度,可以说是01背包和完全背包的进阶问题. 多重背包:物品可 ...

随机推荐

  1. BZOJ1455:罗马游戏

    题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=1455 浅谈左偏树:https://www.cnblogs.com/AKMer/p/102466 ...

  2. C# 利用Xsd验证xml

    最近做项目时,用到了xml的序列化与反序列化, 发现最好用xsd来验证xml, 因为反序列化xml不校验xsd. 方法:xmlData变量为xml字符串 MemoryStream ms = new M ...

  3. Python-RabbitMQ消息队列实现rpc

    客户端通过发送命令来调用服务端的某些服务,服务端把结果再返回给客户端 这样使得RabbitMQ的消息发送端和接收端都能发送消息 返回结果的时候需要指定另一个队列 服务器端 # -*- coding:u ...

  4. C#设计模式(9)——装饰者模式

    一.概念 装饰者模式以对客户透明的方式动态地给一个对象附加上更多的责任,装饰者模式相比生成子类可以更灵活地增加功能. 二.模型 三.代码实现 /// <summary> /// 手机抽象类 ...

  5. LAMP 1.8默认虚拟主机

    默认虚拟主机是为了解决别人域名恶心绑定自己的服务器ip,可导致服务器上的网站排名靠后,即干扰seo优化 我们访问指定的两个网站可以直接访问,ip也可以访问 打开配置文件 vim /usr/local/ ...

  6. 串口发送Hex数组

    void MainWindow::String2Hex(QString str, QByteArray &senddata) { int hexdata,lowhexdata; ; int l ...

  7. Eclipse中插件的使用:maven /ant /tomcat

    一:使用Eclipse构建Maven项目 http://blog.csdn.net/jackgaolei/article/details/11332249 二:Maven介绍,包括作用.核心概念.用法 ...

  8. mac下已装virtualbox运行genymotion还报错找不到虚拟机的解决办法

    sudo ln -s /usr/local/bin/VBoxManage /usr/bin/VBoxManage  

  9. Git merge一个branch到另一个branch

    在项目开发过程中,需要merge一个branch (branch名 taskBranch) 到另一个名为develop 的branch 方法: 先保证当前停留在develop的branch上 然后执行 ...

  10. 使用 typescript ,提升 vue 项目的开发体验(2)

    此文已由作者张汉锐授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. vuex-class 提供了和 vuex 相关的全部装饰器,从而解决了上面 Vue.extend + vue ...