题目大意是和普通的NIM游戏一样,但是却是取到最后一个是输的,天真的以为就是反过来,其实并不是这样的

结论

先手必胜的条件为 
①:所有堆的石子数均=1,且有偶数堆。 
②:至少有一个堆的石子数>1,且石子堆的异或和≠0。

证明

一、当所有堆的石子数均为1时 
     (1):石子异或和(t)=0,即有偶数堆。此时显然先手必胜。 
     (2):t≠0,即有奇数堆。此时显然先手必败。 
二、当有一堆的石子数>1时,显然t≠0 
     (1):总共有奇数堆石子,此时把>1的那堆取至1个石子,此时便转化为一.(2),先手必胜。 
     (2):总共有偶数堆石子,此时把>1的那堆取完,同样转化为一.(2),先手必胜。 
三、当有两堆及以上的石子数>1时 
     (1):t=0,那么可能转化为以下两个子状态: 
                 ①:至少两堆及以上的石子数>1且t≠0,即转为三.(2)。 
                 ②:至少一堆石子数>1,由二可知此时必胜。 
     (2):t≠0,根据Nim游戏的证明,可以得到总有一种方法转化为三.(1)状态。 
观察三我们发现,三.(2)能把三.(1)扔给对面,而对面只能扔给你三.(2)或必胜态。所以当三.(2)时先手必胜。

综上,所有堆的石子数均=1且t=0/至少有一个堆的石子数>1且t≠0时,先手必胜。

参考HDU2509

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
int main()
{
int ts;//确定是T态还是S态
int n;
int i,j;
int m[];
int Nuheap;//充裕堆的个数
while(scanf("%d",&n)!=EOF)
{
Nuheap=;
ts=;
for(i=;i<=n;i++)
{
scanf("%d",&m[i]);
if(m[i]>=)
Nuheap++;
ts^=m[i];
}
if((ts==&&Nuheap>=)||(ts!=&&Nuheap==)) //我们知道 如果当前是T2态,那么只能转变成S1或者S2态,此时对手应用正确的方法必胜,所以这个是必败点,同理S0态也是必败点;
{
printf("No\n");
}
else
{
printf("Yes\n");
}
}
return ;
}

(反NIM)的更多相关文章

  1. BZOJ_1022_[SHOI2008]_小约翰的游戏John_(博弈论_反Nim游戏)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1022 反Nim游戏裸题.详见论文<组合游戏略述——浅谈SG游戏的若干拓展及变形>. ...

  2. hdu2509Be the Winner(反nim博弈)

    Be the Winner Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  3. hdu1907John(反nim博弈)

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  4. LightOJ 1253 Misere NIM(反NIM博弈)

    Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, eac ...

  5. BZOJ 1022 / P4279 Luogu [SHOI2008]小约翰的游戏 (反Nim游戏) (Anti-SG)

    题意 反Nim游戏,两人轮流选一堆石子拿,拿到最后一个的输.问先手是否必胜. 分析 怎么说,分类讨论? 情形1:首先考虑最简单的情况,所有石子数都为1.那么奇数堆石子为必败,偶数为必胜 情形2:然后考 ...

  6. 两类特殊的Nim游戏:Nim-K游戏与反Nim游戏

    Nim-K游戏 描述 有\(n\)堆石子,每次可从\(k\)堆石子中拿走任意数量的石子. 两个人轮流拿,谁不能拿谁输. 先手必胜条件 把\(n\)堆石子的石子数用二进制表示,统计每一个二进制位上\(1 ...

  7. 反Nim博弈

    原文地址:https://blog.csdn.net/xuejye/article/details/78975900 在尼姆博奕中取完最后一颗糖的人为赢家,而取到最后一颗糖为输家的就是反尼姆博奕.这道 ...

  8. [bzoj1022][SHOI2008]小约翰的游戏John (反Nim游戏)

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取 的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不 ...

  9. 1022: [SHOI2008]小约翰的游戏John【Nim博弈,新生必做的水题】

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2709  Solved: 1726[Submit] ...

随机推荐

  1. CH6802 車的放置 和 CH6B24 Place the Robots

    6802 車的放置 0x60「图论」例题 描述 给定一个N行M列的棋盘,已知某些格子禁止放置.问棋盘上最多能放多少个不能互相攻击的車.車放在格子里,攻击范围与中国象棋的"車"一致. ...

  2. ACM学习历程—UESTC 1222 Sudoku(矩阵)(2015CCPC H)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1226 题目大意就是构造一个行列和每个角的2*2都是1234的4*4矩阵. 用dfs暴力搜索,不过需要每一步进 ...

  3. UnityShader实例15:屏幕特效之Bloom

    http://blog.csdn.net/u011047171/article/details/48522073 Bloom特效       概述        Bloom,又称“全屏泛光”,是游戏中 ...

  4. #define与typedef区别

    1) #define是预处理指令,在编译预处理时进行简单的替换,不作正确性检查,不关含义是否正确照样带入,只有在编译已被展开的源程序时才会发现可能的错误并报错.例如: #define PI 3.141 ...

  5. 杂项-协议-HTTP:GET/POST/PUT/DELETE/INPUT/TRACE/OPTIONS/HEAD方法

    ylbtech-杂项-协议-HTTP:GET/POST/PUT/DELETE/INPUT/TRACE/OPTIONS/HEAD方法 1.返回顶部 1. 请求方法是请求一定的Web页面的程序或用于特定的 ...

  6. asp中实现lable自动换行

    asp中实现lable自动换行 因为在用Label标签显示内容时,内容太多,想实现自动换行.我们知道在WINFORM中程序中,有一个属性是AUTOSIZE 改成FALSE 是可以实现的.但是在ASP. ...

  7. 请问两个div之间的上下距离怎么设置

    转自:https://zhidao.baidu.com/question/344630087.html 楼上说的是一种方法,yanzilisan183 <div style="marg ...

  8. javaScript之Array方法

    Array类型和其他语言一样,是数据的有序列表,但不同的是数组的每一项们可以保存任何类型的数据. 1.检测方法(确定某个对象是不是数组) (1)value instanceof Array (2)Ar ...

  9. angularJS中自定义指令

    学习了angularJS一周,但是大部分时间被自定义指令占用了.博主表示自学互联网好心塞的,发现问题的视觉很狭窄,这比解决问题要更难.这篇文章首先介绍了自定义,然后介绍了在使用自定义指令遇到的问题. ...

  10. 同名项目复制,发布新项目,提示已存在该项目于webapp

    来自为知笔记(Wiz)