As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

Each modification is one of the following:

  1. Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
  2. Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.

DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

Input

The first line contains four space-separated integers n, m, k and p (1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

Output

Output a single integer — the maximum possible total pleasure value DZY could get.

Examples
Input

Copy
2 2 2 2
1 3
2 4
Output

Copy
11
Input

Copy
2 2 5 2
1 3
2 4
Output

Copy
11
Note

For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:

1 1
0 0

For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:

-3 -3
-2 -2
貌似行和列不太好处理?
假设先对行进行处理了 i 次,那么列自然就是 k-i 次处理;
对行操作结束后:
sum-=m*p*i;
此时对列的就是 -= (k-i)*p*i;
那么我们枚举行和列的操作次数即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ priority_queue<ll>r, c;
ll n, m;
ll maxc[maxn], maxr[maxn];
ll a[2000][2000]; int main() {
//ios::sync_with_stdio(0);
ll k, p;
cin >> n >> m >> k >> p;
ll sumr = 0, sumc = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
rdllt(a[i][j]);
sumr += a[i][j];
}
r.push(sumr); sumr = 0;
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
sumc += a[j][i];
}
c.push(sumc); sumc = 0;
}
ll maxx = -1e17 - 4;
for (int i = 1; i <= k; i++) {
ll tmp = r.top(); r.pop();
maxr[i] = maxr[i - 1] + tmp;
r.push(tmp - m * p);
}
for (int i = 1; i <= k; i++) {
ll tmp = c.top(); c.pop();
maxc[i] = maxc[i - 1] + tmp;
c.push(tmp - n * p);
}
for (int i = 0; i <= k; i++) {
ll ans = maxc[i] + maxr[k - i] - (ll)i*(k - i)*p;
maxx = max(maxx, ans);
}
cout << maxx << endl;
return 0;
}
												

CF446B DZY Loves Modification 优先队列的更多相关文章

  1. Codeforces Round #FF (Div. 1) B. DZY Loves Modification 优先队列

    B. DZY Loves Modification 题目连接: http://www.codeforces.com/contest/446/problem/B Description As we kn ...

  2. Codeforces Round #FF (Div. 2) D. DZY Loves Modification 优先队列

    D. DZY Loves Modification time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. CF446B DZY Loves Modification 【思维/优先队列】By cellur925

    题目传送门 题目大意:给一个 \(n*m\) 的矩阵,并进行 \(k\) 次操作,每次操作将矩阵的一行或一列的所有元素的值减 \(p\) ,得到的分数为这次修改之前这一列/一行的元素和,求分数最大值. ...

  4. D. DZY Loves Modification

    D. DZY Loves Modification time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  5. [CodeForces - 447D] D - DZY Loves Modification

    D - DZY Loves Modification As we know, DZY loves playing games. One day DZY decided to play with a n ...

  6. Codeforces 447D - DZY Loves Modification

    447D - DZY Loves Modification 思路:将行和列分开考虑.用优先队列,计算出行操作i次的幸福值r[i],再计算出列操作i次的幸福值c[i].然后将行取i次操作和列取k-i次操 ...

  7. B. DZY Loves Modification

    B. DZY Loves Modification time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  8. Codeforces Round #FF (Div. 1) B. DZY Loves Modification

    枚举行取了多少次,如行取了i次,列就取了k-i次,假设行列单独贪心考虑然后相加,那么有i*(k-i)个交点是多出来的:dpr[i]+dpc[k-i]-i*(k-i)*p 枚举i取最大值.... B. ...

  9. Codeforces Round #FF/#255 D DZY Loves Modification --贪心+优先队列

    题意:给你一个矩阵,每次选某一行或者某一列,得到的价值为那一行或列的和,然后该行每个元素减去p.问连续取k次能得到的最大总价值为多少. 解法: 如果p=0,即永远不减数,那么最优肯定是取每行或每列那个 ...

随机推荐

  1. [原]NYOJ-6174问题-57

    大学生程序代写 /*6174问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描述 假设你有一个各位数字互不相同的四位数,把所有的数字从大到小排序后得到a,从小到大后得到b ...

  2. [原]NYOJ-数的位数-69

    大学生程序代写 /*  NYOJ69 阶乘数位长度 http://acm.nyist.net/JudgeOnline/problem.php?pid=69 数的长度 时间限制:3000 ms  |   ...

  3. Gym - 100570B :ShortestPath Query(SPFA及其优化)

    题意:给定N点M边的有向图,每条边有距离和颜色,一条有效路径上不能有相邻的边颜色相同.现在给定起点S,多次讯问S到点X的最短有效距离. TLE思路:用二维状态dis(u,c)表示起点到u,最后一条边的 ...

  4. bzoj 3165: [Heoi2013]Segment 线段树

    题目: Description 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第i条被插入的线段的标号为i. 给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号. ...

  5. JS之事件监听

    一 如果事件监听类似于如下写法,则最终只会执行最后一个事件监听,其他监听都会被覆盖掉. window.onload=funtion(){console.log(1);}; window.onload= ...

  6. git rebase小计(转)

    git rebase,顾名思义,就是重新定义(re)起点(base)的作用,即重新定义分支的版本库状态.要搞清楚这个东西,要先看看版本库状态切换的两种情况: 我们知道,在某个分支上,我们可以通过git ...

  7. linux python 更新版本

    更新python: 第1步:更新gcc,因为gcc版本太老会导致新版本python包编译不成功 代码如下: #yum -y install gcc 系统会自动下载并安装或更新,等它自己结束 第2步:下 ...

  8. 【转】 Pro Android学习笔记(七七):服务(2):Local Service

    目录(?)[-] Local service代码 调用Local ServiceLocal Service client代码 AndroidManifestxml定义Serviceacitivty的l ...

  9. bzoj2118

    最短路 很早以前做的了 数据范围太大,不能直接算 mn=min(a[i]) 算出d[i]表示sum%mn=i最小能构成的数,这个用最短路就行了,然后计算d[i],d[i]+mn的个数统计答案 #inc ...

  10. linux命令-vim一般模式下光标移动

    vim 有一般模式,编辑模式,命令模式 ///////一般模式可以光标移动,复制,剪切,粘贴     编辑模式可以输入想输入的字符       命令模式刚才用到了set nu //////////// ...