HDU - 1878 欧拉回路 (连通图+度的判断)
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0
题解:我们知道欧拉回路主要是有两个条件:1.连通图 。2.所有点的度都为偶数。然后此题就可解了
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int pre[10005];
int find (int x)
{
if(x==pre[x])
return x;
else
{
return pre[x]=find(pre[x]);
}
}
void merge(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
}
}
bool connect(int n)
{
int cnt=0;
for(int t=1;t<=n;t++)
{
if(pre[t]==t)
cnt++;
}
if(cnt==1)
{
return true;
}
else
{
return false;
}
}
int main()
{
int n,m;
int deg[100005];
while(scanf("%d",&n))
{
if(n==0)
{
break;
}
scanf("%d",&m);
for(int t=1;t<=n;t++)
{
pre[t]=t;
}
for(int t=1;t<=n;t++)
{
deg[t]=0;
}
int a,b;
for(int t=0;t<m;t++)
{
scanf("%d%d",&a,&b);
deg[a]++;
deg[b]++;
merge(a,b);
}
int flag=0;
for(int t=1;t<=n;t++)
{
if(deg[t]%2!=0)
{
flag=1;
}
}
if(!flag&&connect(n))
{
printf("1\n");
}
else
{
printf("0\n");
}
}
return 0;
}
HDU - 1878 欧拉回路 (连通图+度的判断)的更多相关文章
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- HDU 1878 欧拉回路
并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...
- HDU 1878 欧拉回路 图论
解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...
- HDU 1878 欧拉回路(无向图的欧拉回路)
欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 1878 欧拉回路(联通<并查集> + 偶数点)
欧拉回路Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1878(1Y) (判断欧拉回路是否存在 奇点个数为0 + 一个联通分量 *【模板】)
欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 1878 无向图的欧拉回路
原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...
- HDU - 1272-小希的迷宫(连通图+环的判断)
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了 ...
- hdu 1878
http://acm.hdu.edu.cn/showproblem.php?pid=1878 题意:就是判断这个图是不是一个欧拉回路的一个题, 思路:我觉得这个题可以用并查集判环加上判断每个点的度就行 ...
随机推荐
- 用JS,打印正立三角形
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- 使用/dev/dsp的wav文件播放器源码
转载于:http://blog.csdn.net/dux003/article/details/5459423 #include #include #include #include #include ...
- Python02 标准输入输出、数据类型、变量、随记数的生成、turtle模块详解
1 标准输出 python3利用 print() 来实现标准输出 def print(self, *args, sep=' ', end='\n', file=None): # known speci ...
- Struts第三天
OgnlValueStack贯穿整个 Action 的生命周期. 它是ContextMap中的一部分,里面的结构是一个List,是我们可以快速访问数据一个容器.它的封装是由struts2框架完成的. ...
- c语言学习笔记 const变量
在c语言的编程过程中经常会遇到有常数参加运算的运算,比如这种. int a=100*b; 这个100我们叫常数或者叫常量,但是程序中我们不推荐这种直接写常数的方法,有两个缺点. 第一是程序可读性差. ...
- 一个ButtonDemo序(遇到的问题,以及在大牛的帮助下,如何解决的。)
问题1: public ButtonDemo(){ //ImageIcon leftButtonIcon=new ImageIcon("images/a.png"); ImageI ...
- CF702E Analysis of Pathes in Functional Graph
倍增练习题. 基环树上倍增一下维护维护最小值和权值和,注意循环的时候$j$这维作为状态要放在外层循环,平时在树上做的时候一个一个结点处理并不会错,因为之前访问的结点已经全部处理过了. 时间复杂度$O( ...
- LeetCode第35题:搜索插入位置
题目描述: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引.如果目标值不存在于数组中,返回它将会被按顺序插入的位置. 你可以假设数组中无重复元素. 示例 1: 输入: [1,3,5,6 ...
- HDU 5038 Grade (水题,坑题)
题意:给 n 个数,输出众数,但是如果所有的频率都相同但数不同输出 Bad Mushroom. 析:直接记录个数直接暴力就,就是要注意只有一种频率的时候. 代码如下: #pragma comment( ...
- POJ 2686 Traveling by Stagecoach (状压DP)
题意:有一个人从某个城市要到另一个城市, 有n个马车票,相邻的两个城市走的话要消耗掉一个马车票.花费的时间呢,是马车票上有个速率值 ,问最后这个人花费的最短时间是多少. 析:和TSP问题差不多,dp[ ...