题意:给定一个数 n,和一个集合 m,问你小于的 n的所有正数能整除 m的任意一个的数目。

析:简单容斥,就是 1 个数的倍数 - 2个数的最小公倍数 + 3个数的最小公倍数 + ...(-1)^(n+1) * n个数的最小公倍数。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10 + 10;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} int a[maxn];
int lcm(int a, int b){
return a * (b / gcd(a, b));
} int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 0; i < m; ++i) scanf("%d", a+i);
int all = 1<<m;
int ans = 0;
--n;
for(int i = 1; i < all; ++i){
int cnt = 0, l = 1;
for(int j = 0; j < m; ++j) if(i&(1<<j)){
++cnt;
l = lcm(l, a[j]);
}
if(l == 0) continue;
ans += (cnt&1) ? n / l : - n / l;
} printf("%d\n", ans);
}
return 0;
}

  

HDU 1796 How many integers can you find (容斥)的更多相关文章

  1. hdu 1796 How many integers can you find 容斥定理

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. hdu 1796 How many integers can you find 容斥第一题

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. HDU 1796 How many integers can you find 容斥入门

    How many integers can you find Problem Description   Now you get a number N, and a M-integers set, y ...

  4. HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)

    HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...

  5. HDU 1796 How many integers can you find (状态压缩 + 容斥原理)

    题目链接 题意 : 给你N,然后再给M个数,让你找小于N的并且能够整除M里的任意一个数的数有多少,0不算. 思路 :用了容斥原理 : ans = sum{ 整除一个的数 } - sum{ 整除两个的数 ...

  6. HDU 1796 How many integers can you find(容斥原理)

    题目传送:http://acm.hdu.edu.cn/diy/contest_showproblem.php?cid=20918&pid=1002 Problem Description    ...

  7. HDU 1796 How many integers can you find(容斥原理+二进制/DFS)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  8. HDU How many integers can you find 容斥

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  9. How many integers can you find(容斥+dfs容斥)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. BZOJ5118:Fib数列2(O1快速模)

    题意:输入N,输出fib(2^N)%1125899839733759.(P=1125899839733759是素数) 思路:欧拉降幂,因为可以表示为矩阵乘法,2^N在幂的位置,矩阵乘法也可以降幂,所以 ...

  2. Hat’s Words(字典树的运用)

    个人心得:通过这道题,对于树的运用又加深了一点,字典树有着他独特的特点,那个指针的一直转换着实让我好生想半天, 不得不佩服这些发明算法人的大脑. 这题的解决方法还是从网上找到的,还好算法是自己实现得, ...

  3. Python 设计一个简单的计算器

    设计目标 实现加减乘除及拓号优先级解析 用户输入'1 - 2 * ( (6-3 +(-5/5)*(9-2*3/3 + 7/3*7/4*12 +10 * 5/5 )) - (-4*3)/ (12-3*2 ...

  4. set和get的用法

    import { Map} from 'immutable'; let a = Map({ select: 'users', filter: Map({ name: 'Cam' }) }) let b ...

  5. navicate笔记

    使用sql语句,在查询中写入sql语句,点击运行即可. 想让表清空,自增id从1开始,右键表选择删减表即可

  6. 布同:使用ghost备份或者还原的往事

    我大学的时候经常折腾电脑,安装了不少莫名其妙的东西.当时对各种小软件特别感兴趣,本着毕业后可以做客户端开发的初衷去做事情.不过很多小软件会恶意安装各种东西,修改注册表,时间一长就会导致C盘很臃肿,必须 ...

  7. Erlang pool management -- Emysql pool optimize

    在上一篇关于Emysql pool (http://www.cnblogs.com/--00/p/4281938.html)的分析的最后提到 现在的emysql_conn_mgr gen_server ...

  8. java代码split分割数字类

    总结:正则表达式-- package com.c2; //写一个spli的用法,数字类 ===分割字符串 public class yqw { public static void main(Stri ...

  9. 2016.3.7 Word2007编号设置

    1.点击下图红圈出的下拉箭头 2.点击下图新建样式按钮 3.在弹出窗口中,设置名称AAA(方便稍后的查找修改),样式类型改为列表,点击编号 4.在弹出的窗口中以此设置各级标题的编号样式,保存后设置成功 ...

  10. Java连接mysql数据库攻略

    一. 软件下载 Mysql 下载版本:4.1.11 http://dev.mysql.com/downloads/mysql/4.1.html JDBC驱动 下载版本:3.1.8 http://dev ...