Count Numbers(矩阵快速幂)
Count Numbers
时间限制: 8 Sec 内存限制: 128 MB
提交: 43 解决: 19
[提交] [状态] [讨论版] [命题人:admin]
题目描述
However we all know the number of this kind of integers are unlimited. So she decides to sum up all these numbers whose each digit is non-zero.
Since the answer could be large, she only needs the remainder when the answer divided by a given integer p.
输入
For each test case, a line consisting of three integers a, b (1 ≤ a, b ≤ 20) and p (2 ≤ p ≤ 109 ) describes the restriction of the digit sum and the given integer p.
输出
Here we provide an explanation of the following sample output. All integers satisfying the restriction in the input are 4, 13, 31, 22, 121, 112, 211 and 1111. The sum of them all is 4 + 13 + 31 + 22 + 121 + 112 + 211 + 1111 = 1625 and that is exactly the sample output.
样例输入
5
2 1 1000000
3 1 1000000
2 2 1000000
3 3 1000000
10 1 1000000
样例输出
13
147
1625
877377
935943
题意:求十进制下各个位上的数字和为n的数的总和。
分析:
n很大,要用__int128来存。如果这个数的最后一位为1,那么就需要求出所有k-1的答案数字,然后在其最后加上1,如果最后一位为2,那么就需要求出所有k-2的答案数字,然后在其最后加上2,
一直可以分析到最后一位为9的情况。那么我们需要两个数组ans[i],cut[i],ans[i]代表n=i时的答案是多少,cut[i]代表n=i时满足数字和是i的数字有多少个。
因此就可以推出递推公式:cut[i]=sum(cut[i-j]){1<=j<=9},ans[i]=sum(10*ans[i-j]+j*cut[i-j]){1<=j<=9}。
有了递推式就可以套矩阵快速幂了,这里要注意矩阵要开18*18的,这样方便转移状态。
最后一点就是矩阵乘法可以放弃以往的一行乘一列的写法,用一种新的写法,这样可以省下不少时间。
构造的矩阵(n大于9时,用于以n==9为基础往上递推,n小于等于9时直接暴力)为:
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll p;
int addmod(int a,int b)
{
return a+b>=p?a+b-p:a+b;
}
int mulmod(long long a,int b)
{
return a*b%p;
}
struct Mat
{
int v[][];
Mat()
{
memset(v,,sizeof(v));
}
void init()
{
for(int i=;i<;i++)
{
v[i][i]=;
}
} };
Mat operator *(Mat a,Mat b)
{
Mat c;
for (int i=; i<; i++)
{
for (int j=; j<; j++)
{
if(a.v[i][j])
{
for (int k=; k<; k++)
{
if(b.v[j][k])
{
c.v[i][k]=addmod(c.v[i][k],mulmod(a.v[i][j]%p,b.v[j][k]%p));
}
}
}
}
}
return c;
}
Mat qmod(Mat a,__int128 k)
{
Mat c;
c.init();
while(k>)
{
if(k&) c=c*a;
a=a*a;
k>>=;
}
return c;
}
int main()
{
ll ans[]={},cut[]={};
ll aa,bb,t;
__int128 now;
Mat a,b,c;
cut[]=;
for(int i=; i<=; i++)
{
for(int j=; j<=i; j++)
{
ans[i]+=*ans[i-j]+j*cut[i-j];
cut[i]+=cut[i-j];
}
}
for(int i=; i<; i++) a.v[][i]=;
for(int i=; i<; i++) a.v[][i]=i-;
for(int i=; i<; i++) a.v[i][i-]=;
for(int i=; i<; i++) a.v[][i]=;
for(int i=; i<; i++) a.v[i][i-]=;
scanf("%lld",&t);
while(t--)
{
scanf("%lld %lld %lld",&aa,&bb,&p);
for(int i=; i<; i++) b.v[i][]=ans[-i]%p;
for(int i=; i<; i++) b.v[i][]=cut[-i]%p;
now=aa;
for(int i=; i<=bb; i++) now=now*(__int128)aa;
if(now<=)
{
printf("%lld\n",ans[now]%p);
continue;
}
c=qmod(a,now-)*b;
printf("%lld\n",c.v[][]);
}
return ;
}
注意:__int128在有的情况下不能编译!!!
Count Numbers(矩阵快速幂)的更多相关文章
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others) ...
- Project Euler 435 Polynomials of Fibonacci numbers (矩阵快速幂)
题目链接: https://projecteuler.net/problem=435 题意: The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined rec ...
- HDU 6470:Count(矩阵快速幂)
Count Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- Sam's Numbers 矩阵快速幂优化dp
https://www.hackerrank.com/contests/hourrank-21/challenges/sams-numbers 设dp[s][i]表示产生的总和是s的时候,结尾符是i的 ...
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- 广工十四届校赛 count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意:求,直接矩阵快速幂得f(n)即可 构造矩阵如下: n^3是肯定得变换的,用二项式展开来一点 ...
- HDU 3117 Fibonacci Numbers( 矩阵快速幂 + 数学推导 )
链接:传送门 题意:给一个 n ,输出 Fibonacci 数列第 n 项,如果第 n 项的位数 >= 8 位则按照 前4位 + ... + 后4位的格式输出 思路: n < 40时位数不 ...
- UOJ424 Count 生成函数、多项式求逆、矩阵快速幂
传送门 两个序列相同当且仅当它们的笛卡尔树相同,于是变成笛卡尔树计数. 然后注意到每一个点的权值一定会比其左儿子的权值大,所以笛卡尔树上还不能够存在一条从根到某个节点的路径满足向左走的次数\(> ...
随机推荐
- ffmpeg转码多路输出(二)
ffmpeg转码多路输出(二)本程序支持一路输入多路输出,可根据map配置自行添加,第1路为纯拷贝,其他2路经过编解码,格式转换缩放和重采样,纯拷贝方面不同格式适应方面还没做全,以后补充.本程序适合多 ...
- Jenkins+maven+gitlab+shell实现项目自动化部署
确认jdk , maven,git这些已经在服务器上搭建成功,gitlab使用的是公司服务也没有进行搭建 下面是jenkins的两种搭建方式 1. 第一种比较简单下载对应jenkins.wa ...
- java程序生成二维码
在物联网的时代,二维码是个很重要的东西了,现在无论什么东西都要搞个二维码标志,唯恐落伍,就差人没有用二维码识别了.也许有一天生分证或者户口本都会用二维码识别了.今天心血来潮,看见别人都为自己的博客添加 ...
- svn常用功能使用简介
1.文档库地址: https://xxx.xxx.xxx.xxx/svn/ 2.svn添加文件 2.1 在本地电脑上任何空白地方,右键-->打开“浏览版本库(Repo-browser)”,如图: ...
- java对象在内存中的分配
java对象在内存中的分配 http://blog.csdn.net/qq_30753945/article/details/54974899
- scau 8616 汽车拉力比赛
上次我们过了二分图的最佳匹配,现在我们看一道题目,经典的二分图的最佳匹配题目 8616 汽车拉力比赛 时间限制:500MS 内存限制:1000K提交次数:71 通过次数:24 题型: 编 ...
- SPOJ 3267: DQUERY 树状数组,离线算法
给出q个询问,询问一段区间里面的不同元素的个数有多少个. 离线做,用树状数组. 设树状数组的意义是:1--pos这个段区间的不用元素的种类数.怎么做?就是add(pos,1);在这个位置中+1,就是说 ...
- JAVA多线程之线程池的使用
合理利用线程池能够带来三个好处. 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 第三:提高线程 ...
- 双层列表 datagrid里属性
frozenColumns: [ [{ title: "姓名"}] ], columns: [ [{"title":"延时原因"}], [{ ...
- Django学习笔记(13)——Django的用户认证(Auth)组件,视图层和QuerySet API
用户认证组件的学习 用户认证是通过取表单数据根数据库对应表存储的值做比对,比对成功就返回一个页面,不成功就重定向到登录页面.我们自己写的话当然也是可以的,只不过多写了几个视图,冗余代码多,当然我们也可 ...