题目传送门

我校神仙出的神仙题 \(\%\%\%\)


30分

找出所有有入度的点,排序,选前\(k\)个点,好了,30分到手。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
int read(){
    int k=0,f=1; char c=getchar();
    for(;c<'0'||c>'9';c=getchar())
      if(c=='-') f=-1;
    for(;c>='0'&&c<='9';c=getchar())
      k=k*10+c-48;
    return k*f;
}
int a[100010],sum,in[100010],b[100010],top;
bool cmp(int x,int y){
    return x > y;
}
int main(){
    int n=read(),m=read(),k=read();
    for(int i=1;i<=n;i++) a[i]=read();
    for(int i=1;i<=m;i++){
        int x=read(),y=read();
        in[y]++;
    }
    for(int i=1;i<=n;i++)
      if(in[i])  b[++top]=a[i];
    sort(b+1,b+top+1,cmp);
    for(int i=1;i<=k;i++) sum+=b[i];
    cout<<sum;
    return 0;
}

就这么简单
我跟你讲,这个做法以前是可以AC的

这个做法可以\(A\)掉\(DAG\)的\(Subtask\)
因为图是一个\(DAG\),所以对于所有有入度的点,一定可以将它们全部删去——从后向前删即可。既然所有有入度的点都能删去,我们只要贪心的取出前\(k\)大就好了。

AC

对于\(DAG\),一定可以将所有有入度的点全部删去,而普通有向图就不一样了——有环的存在

如上面\(4\)个点,它们形成了一个环,我们最多只能删掉\(3\)个。因为必定会有一个点被留下,所以我们贪心的留下点权最小的点。
但对环的讨论是十分繁琐的,我们可以先将整张图用\(Tarjan\)缩成一张\(DAG\),每个强连通分量内一定至少有一个环。对于强连通分量,我们分类讨论一下。

  • 对于缩点后有入度的强连通分量,十分显然,它内部的点我们可以随便选
  • 没有入度的强连通分量,我们必定要留下一个,理由如上所说。同理,我们贪心的留下点权最小的点即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int read(){
    int k=0; char c=getchar();
    for(;c<'0'||c>'9';) c=getchar();
    for(;c>='0'&&c<='9';c=getchar())
      k=k*10+c-48;
    return k;
}
struct zzz{
    int f,t,nex;
}e[2000010]; int head[500010],tot;
void add(int x,int y){
    e[++tot].t=y; e[tot].f=x;
    e[tot].nex=head[x];
    head[x]=tot;
}
struct hhh{
    int v,pos;
}a[500010];
int dfn[500010],low[500010],deep,vis[500010],colnum[500010],belong[500010],col,s[500010],top;
void Tarjan(int now){  //Tarjan缩点
    dfn[now]=low[now]=++deep; s[++top]=now; vis[now]=1;
    for(int i=head[now];i;i=e[i].nex){
        if(!dfn[e[i].t]){
            Tarjan(e[i].t);
            low[now]=min(low[now],low[e[i].t]);
        }
        else if(vis[e[i].t])
          low[now]=min(low[now],dfn[e[i].t]);
    }
    if(dfn[now]==low[now]){
        col++;
        int v=0;
        do{
            v=s[top--];
            vis[v]=0;
            colnum[col]++;
            belong[v]=col;
        }while(v!=now);
    }
}
int in[500010],ans;
bool cmp(hhh x,hhh y){
    return x.v < y.v;
}
bool cmp2(hhh x,hhh y){
    return x.v > y.v;
}
bool flag[500010],mapp[500010];
int main(){
    int n=read(),m=read(),k=read();
    for(int i=1;i<=n;i++)
      a[i].v=read(), a[i].pos=i;
    for(int i=1;i<=m;i++){
        int x=read(),y=read();
        add(x,y);
    }
    for(int i=1;i<=n;i++)
      if(!dfn[i]) Tarjan(i);
    memset(head,0,sizeof(head));
    for(int i=1;i<=tot;i++){  //缩点之后处理入度
        if(belong[e[i].f]!=belong[e[i].t])
          ++in[belong[e[i].t]];
    }
    //=======剔除入度为0的强联通分量里点权最小的点
    sort(a+1,a+n+1,cmp);
    for(int i=1;i<=n;i++){
        if(!in[belong[a[i].pos]]&&!flag[belong[a[i].pos]]){
            flag[belong[a[i].pos]]=1;
            mapp[a[i].pos]=1;
        }
    }
    int cnt=0;
    //=======贪心的从大到小选点
    sort(a+1,a+n+1,cmp2);
    for(int i=1;i<=n;i++){
        if(cnt==k) break;
        if(mapp[a[i].pos]) continue;
        ans+=a[i].v; cnt++;
    }
    cout<<ans;
    return 0;
}

在文章的最后,放一下官方题解,233~~~

Luogu P5008 逛庭院的更多相关文章

  1. 【洛谷P5008 逛庭院】tarjan缩点+贪心

    既然没有题解,那么我就来提供给一份. -- 首先我们看到数据范围.妈耶!数据这么大,一开始还想用个DP来做,但是看着就不行,那么根据这个数据范围,我们大致可以猜到这道题的算法是一个贪心,那么我们怎么贪 ...

  2. 【洛谷5008】逛庭院(Tarjan,贪心)

    [洛谷5008]逛庭院(Tarjan,贪心) 题面 洛谷 题解 如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的. 现 ...

  3. [Luogu P3953] 逛公园 (最短路+拓扑排序+DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3953 Solution 这是一道神题 首先,我们不妨想一下K=0,即求最短路方案数的部分分. 我们很容易 ...

  4. 【luogu P3953 逛公园】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3953 题外话:感觉2017年神题好多..这还不是最神的一道,真在考场上我也就写个最短路计数暴力了.现在在大佬 ...

  5. luogu 3953 逛公园

    noip2017 D1T3 逛公园 某zz选手看到数据范围直接就最短路计数了,结果写错了爆零 题目大意: N个点M条边构成的有向图,且没有自环和重边.其中1号点是起点,N号点是公园的终点,每条边有一个 ...

  6. Luogu P3953 逛公园(最短路+记忆化搜索)

    P3953 逛公园 题面 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园的入口,\(N\) 号点是公 ...

  7. luogu5008 逛庭院 (tarjan缩点)

    首先如果这是一个DAG,我按照拓扑序倒着去选,一定能选到所有入度不为0的点 然后考虑有环的情况 我们拎出来一个强连通分量 先假设它缩点以后是没有入度的 那我最后它里面一定至少剩一个不能选 因为就剩一个 ...

  8. Luogu P3953 逛公园

    不管怎么说,这都是一道十分神仙的NOIp题 你可以说它狗,但不可以否认它就是NOIp的难度 首先这道题很显然是道图论题还是一道图论三合一(最短路+拓扑+图上DP) 先考虑最短路,我们分别以\(1\)和 ...

  9. [luogu5008]逛庭院

    首先我们看到数据范围.妈耶!数据这么大,一开始还想用个DP来做,但是看着就不行,那么根据这个数据范围,我们大致可以猜到这道题的算法是一个贪心,那么我们怎么贪呢? 我们首先还是先画一个图: 样例解释一下 ...

随机推荐

  1. 面试d090305知识点准备01

    1.1  类成员访问[jL1] 权限 1.2  写个双线程,计算50内的奇偶数 1.3  打印等腰三角形 1.4  运算符优先级 括号,非正负和自增减(右到左),乘除加减,等于不等于,逻辑与和或,然后 ...

  2. java socket 网络通信 指定端口的监听 多线程 乱码

    Java Socket编程 对于Java Socket编程而言,有两个概念,一个是ServerSocket,一个是Socket.服务端和客户端之间通过Socket建立连接,之后它们就可以进行通信了.首 ...

  3. 小程序外部向组件内部传递externalClasses -- 传入样式wxss

    1.组件的JS添加配置 // 外部传入class类 externalClasses:['my-class'], 2.组件的wxml写法: 3.调用的页面 4.调用页面的wxss: 由于小程序的限制必须 ...

  4. idea dao使用@Mapper注解 业务类使用@Autowired 注入dao 爆红问题

    实际项目跑起来无影响,但是看起来不太爽. 可以在dao类添加org.springframework.stereotype.Repository 注解 或者可以在service类中使用 javax.an ...

  5. angular中[hidden]="expression"注意事项

    [hidden]="expression",右侧的表达式尽量使用布尔值:虽然比较运算符也可以达到效果,但时常会出现一些莫名其妙的错误.

  6. Java文件与io——字节流

    FileOutputStream用于写入诸如图像数据之类的原始字节的流 字节输出流:OutputStream 此抽象类表示输出字节流的所有类的超类.(写) 字节输入流:InputStream(读) p ...

  7. MySQL导入大sql 文件大小限制问题的解决

    解决过程如下: 1.由于mysql能解析sql的压缩文件,因此将200M压缩后为5M. 2.默认情况下:MySQL导入文件大小有限制的,最大为2M,所以当文件很大时候,直接无法导入,可修改php.in ...

  8. [COGS 347]地震

    时间限制:4 s   内存限制:128 MB 问题描述 某国地形狭长,中部有一列山脉,由于多发地震,山脉在不断变化中.地震发生时,山脉有可能发生如下变化:局部海拔升高或降低,板块运动产生地裂而出现一段 ...

  9. js中快速的访问某个url

    在做项目中经常会遇到这样的需求,自动向后台发送统计日志,也不需要关心返回值,当然了方法有很多,其中一个方法就是使用Ajax. 在这里我要介绍的方法的原理是使用图片,给这个图片符url,这样就会自动的触 ...

  10. springBoot jpa uuid生成策略

    实体类 import org.hibernate.annotations.GenericGenerator; import javax.persistence.*; @Entity @Table(na ...