题目传送门

我校神仙出的神仙题 \(\%\%\%\)


30分

找出所有有入度的点,排序,选前\(k\)个点,好了,30分到手。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
int read(){
    int k=0,f=1; char c=getchar();
    for(;c<'0'||c>'9';c=getchar())
      if(c=='-') f=-1;
    for(;c>='0'&&c<='9';c=getchar())
      k=k*10+c-48;
    return k*f;
}
int a[100010],sum,in[100010],b[100010],top;
bool cmp(int x,int y){
    return x > y;
}
int main(){
    int n=read(),m=read(),k=read();
    for(int i=1;i<=n;i++) a[i]=read();
    for(int i=1;i<=m;i++){
        int x=read(),y=read();
        in[y]++;
    }
    for(int i=1;i<=n;i++)
      if(in[i])  b[++top]=a[i];
    sort(b+1,b+top+1,cmp);
    for(int i=1;i<=k;i++) sum+=b[i];
    cout<<sum;
    return 0;
}

就这么简单
我跟你讲,这个做法以前是可以AC的

这个做法可以\(A\)掉\(DAG\)的\(Subtask\)
因为图是一个\(DAG\),所以对于所有有入度的点,一定可以将它们全部删去——从后向前删即可。既然所有有入度的点都能删去,我们只要贪心的取出前\(k\)大就好了。

AC

对于\(DAG\),一定可以将所有有入度的点全部删去,而普通有向图就不一样了——有环的存在

如上面\(4\)个点,它们形成了一个环,我们最多只能删掉\(3\)个。因为必定会有一个点被留下,所以我们贪心的留下点权最小的点。
但对环的讨论是十分繁琐的,我们可以先将整张图用\(Tarjan\)缩成一张\(DAG\),每个强连通分量内一定至少有一个环。对于强连通分量,我们分类讨论一下。

  • 对于缩点后有入度的强连通分量,十分显然,它内部的点我们可以随便选
  • 没有入度的强连通分量,我们必定要留下一个,理由如上所说。同理,我们贪心的留下点权最小的点即可。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int read(){
    int k=0; char c=getchar();
    for(;c<'0'||c>'9';) c=getchar();
    for(;c>='0'&&c<='9';c=getchar())
      k=k*10+c-48;
    return k;
}
struct zzz{
    int f,t,nex;
}e[2000010]; int head[500010],tot;
void add(int x,int y){
    e[++tot].t=y; e[tot].f=x;
    e[tot].nex=head[x];
    head[x]=tot;
}
struct hhh{
    int v,pos;
}a[500010];
int dfn[500010],low[500010],deep,vis[500010],colnum[500010],belong[500010],col,s[500010],top;
void Tarjan(int now){  //Tarjan缩点
    dfn[now]=low[now]=++deep; s[++top]=now; vis[now]=1;
    for(int i=head[now];i;i=e[i].nex){
        if(!dfn[e[i].t]){
            Tarjan(e[i].t);
            low[now]=min(low[now],low[e[i].t]);
        }
        else if(vis[e[i].t])
          low[now]=min(low[now],dfn[e[i].t]);
    }
    if(dfn[now]==low[now]){
        col++;
        int v=0;
        do{
            v=s[top--];
            vis[v]=0;
            colnum[col]++;
            belong[v]=col;
        }while(v!=now);
    }
}
int in[500010],ans;
bool cmp(hhh x,hhh y){
    return x.v < y.v;
}
bool cmp2(hhh x,hhh y){
    return x.v > y.v;
}
bool flag[500010],mapp[500010];
int main(){
    int n=read(),m=read(),k=read();
    for(int i=1;i<=n;i++)
      a[i].v=read(), a[i].pos=i;
    for(int i=1;i<=m;i++){
        int x=read(),y=read();
        add(x,y);
    }
    for(int i=1;i<=n;i++)
      if(!dfn[i]) Tarjan(i);
    memset(head,0,sizeof(head));
    for(int i=1;i<=tot;i++){  //缩点之后处理入度
        if(belong[e[i].f]!=belong[e[i].t])
          ++in[belong[e[i].t]];
    }
    //=======剔除入度为0的强联通分量里点权最小的点
    sort(a+1,a+n+1,cmp);
    for(int i=1;i<=n;i++){
        if(!in[belong[a[i].pos]]&&!flag[belong[a[i].pos]]){
            flag[belong[a[i].pos]]=1;
            mapp[a[i].pos]=1;
        }
    }
    int cnt=0;
    //=======贪心的从大到小选点
    sort(a+1,a+n+1,cmp2);
    for(int i=1;i<=n;i++){
        if(cnt==k) break;
        if(mapp[a[i].pos]) continue;
        ans+=a[i].v; cnt++;
    }
    cout<<ans;
    return 0;
}

在文章的最后,放一下官方题解,233~~~

Luogu P5008 逛庭院的更多相关文章

  1. 【洛谷P5008 逛庭院】tarjan缩点+贪心

    既然没有题解,那么我就来提供给一份. -- 首先我们看到数据范围.妈耶!数据这么大,一开始还想用个DP来做,但是看着就不行,那么根据这个数据范围,我们大致可以猜到这道题的算法是一个贪心,那么我们怎么贪 ...

  2. 【洛谷5008】逛庭院(Tarjan,贪心)

    [洛谷5008]逛庭院(Tarjan,贪心) 题面 洛谷 题解 如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的. 现 ...

  3. [Luogu P3953] 逛公园 (最短路+拓扑排序+DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P3953 Solution 这是一道神题 首先,我们不妨想一下K=0,即求最短路方案数的部分分. 我们很容易 ...

  4. 【luogu P3953 逛公园】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3953 题外话:感觉2017年神题好多..这还不是最神的一道,真在考场上我也就写个最短路计数暴力了.现在在大佬 ...

  5. luogu 3953 逛公园

    noip2017 D1T3 逛公园 某zz选手看到数据范围直接就最短路计数了,结果写错了爆零 题目大意: N个点M条边构成的有向图,且没有自环和重边.其中1号点是起点,N号点是公园的终点,每条边有一个 ...

  6. Luogu P3953 逛公园(最短路+记忆化搜索)

    P3953 逛公园 题面 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园的入口,\(N\) 号点是公 ...

  7. luogu5008 逛庭院 (tarjan缩点)

    首先如果这是一个DAG,我按照拓扑序倒着去选,一定能选到所有入度不为0的点 然后考虑有环的情况 我们拎出来一个强连通分量 先假设它缩点以后是没有入度的 那我最后它里面一定至少剩一个不能选 因为就剩一个 ...

  8. Luogu P3953 逛公园

    不管怎么说,这都是一道十分神仙的NOIp题 你可以说它狗,但不可以否认它就是NOIp的难度 首先这道题很显然是道图论题还是一道图论三合一(最短路+拓扑+图上DP) 先考虑最短路,我们分别以\(1\)和 ...

  9. [luogu5008]逛庭院

    首先我们看到数据范围.妈耶!数据这么大,一开始还想用个DP来做,但是看着就不行,那么根据这个数据范围,我们大致可以猜到这道题的算法是一个贪心,那么我们怎么贪呢? 我们首先还是先画一个图: 样例解释一下 ...

随机推荐

  1. 洛谷P4113 [HEOI2012]采花

    题目描述 萧薰儿是古国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花. 花园足够大,容纳了n朵花,花有c种颜色(用整数1-c表示),且花是排成一排的,以便于 ...

  2. 利用xsltproc转换jtl报告到html报告

    使用Jmeter测试完后并不能直接生成html报告,而是jtl报告.这里我们可以用xsltproc来解决. xsltproc是由DanielVeillard用来C语言编写的是一个快速XSLT引擎,   ...

  3. 牛客练习赛43F(推式子)

    要点 题目链接 1e18的数据无法\(O(n)\)的容斥,于是推式子,官解,其中式子有点小错误 不必预处理mu,直接按照素数的个数判断正负即可 #include <bits/stdc++.h&g ...

  4. div可编辑 可拖动

    版权声明:本文为博主原创文章,未经博主允许不得转载. 1.可编辑: <div id="move" contentEditable="true">可编 ...

  5. python+selenium之多窗口切换

    #打开浏览器driver = webdriver.Firefox()driver.get(url)#获取当前窗口now_handle=driver.current_window_handle # 获取 ...

  6. OpenStack Weekly Rank 2015.07.20

    Module Reviews Drafted Blueprints Completed Blueprints Filed Bugs Resolved Bugs Cinder 8 1 3 9 10 Sw ...

  7. nginx fpm生产环境的权限设置

    http://www.2cto.com/Article/201307/231770.html

  8. Windows8 64位运行Silverlight程序不能访问WCF的解决方案

    公司的项目是Silverlight+WCF,而我的本本是Win8 64位系统,一直无法正常运行Silverlight程序,一个同事找到了方案,现分享出来 一种情况是,Vs2010运行程序时,报无法加载 ...

  9. eaysui 子页面刷新父页面datagrid

    近期碰到这样一个问题,子页面操作后需要刷新父页面datagrid元素,刚开始用这种方式刷新,$("#talbe",window.parent.document).datagrid( ...

  10. 云为 | 提供海外 IT 人才派遣、猎头、人力资源外包服务

    云为是大连信为软件开发有限公司为人力资源外包服务创建的品牌,是中国专业的人力资源外包领域的服务商,在信息技术行业为海外企业雇主招聘合格.专业且技能熟练的精英人士.我们的客户涵盖了日本上市公司和​​株式 ...