BestCoder Round #80 待填坑
Lucky
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1443 Accepted Submission(s): 767
For
a set of numbers S,we set the minimum non-negative integer,which can't
be gotten by adding the number in S,as the lucky number.Of course,each
number can be used many times.
Now,
given a set of number S, you should answer whether S has a lucky
number."NO" should be outputted only when it does have a lucky
number.Otherwise,output "YES".
In each case,the first line is a number n,which is the size of the number set.
Next are n numbers,means the number in the number set.
1≤n≤105,1≤T≤10,0≤ai≤109.
1
2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
int n;
int a[maxn]; int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
rdint(n); bool fg1 = false, fg2 = false;
for (int i = 1; i <= n; i++) {
rdint(a[i]);
if (a[i] == 1)fg1 = true;
if (a[i] == 0)fg2 = true;
} if (fg1&&fg2)cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}
Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2913 Accepted Submission(s): 976
Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.
fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwise
He gives you 5 numbers n,a,b,c,p,and he will eat fn foods.But there are only p foods,so you should tell him fn mod p.
Each testcase has 5 numbers,including n,a,b,c,p in a line.
1≤T≤10,1≤n≤1018,1≤a,b,c≤109,p is a prime number,and p≤109+7.
5 3 3 3 233
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll n, a, b, c, p; struct mat {
ll m[3][3];
mat() { ms(m); }
}; mat operator *(mat a, mat b) {
mat c;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j]) % (p - 1);
}
}
return c;
} mat qpow(mat a, ll b) {
mat c;
for (int i = 0; i < 3; i++)c.m[i][i] = 1;
while (b) {
if (b & 1)c = c * a;
a = a * a; b >>= 1;
}
return c;
} ll qpow(ll a, ll b) {
ll ans = 1;
ll tmp = a;
while (b) {
if (b % 2)ans = (ans * tmp) % p; tmp = (tmp*tmp) % p; b >>= 1;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
cin >> n >> a >> b >> c >> p;
if (n == 1)cout << 1 << endl;
else if (n == 2)cout << qpow(a, b) << endl;
else if (a%p == 0)cout << 0 << endl;
else {
mat tmp;
tmp.m[0][0] = c; tmp.m[0][1] = 1; tmp.m[0][2] = 1;
tmp.m[1][0] = 1; tmp.m[2][2] = 1;
mat ans = qpow(tmp, n - 2);
ll res = (ans.m[0][0] % (p - 1) + ans.m[0][2] % (p - 1))*b % (p - 1);
cout << qpow(a, res) << endl;
}
}
return 0;
}
Segment
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2422 Accepted Submission(s): 896
Today she finds an interesting problem.She finds a segment x+y=q.The segment intersect the axis and produce a delta.She links some line between (0,0) and the node on the segment whose coordinate are integers.
Please calculate how many nodes are in the delta and not on the segments,output answer mod P.
Then,each line has two integers q,P.
q is a prime number,and 2≤q≤1018,1≤P≤1018,1≤T≤10.
2 107
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int T;
ll p;
inline ll qpow(ll a, ll b) {
ll ans = 0;
while (b) {
if (b & 1)ans = (ans + a) % p;
b >>= 1; a = (a + a) % p;
}
return ans;
}
int main() {
//ios::sync_with_stdio(0);
rdint(T);
while (T--) {
ll q; cin >> q >> p;
if ((q - 1) % 2 == 0)cout << qpow((q - 1) / 2, (q - 2)) << endl;
else cout << qpow((q - 2) / 2, (q - 1)) << endl;
}
return 0;
}
BestCoder Round #80 待填坑的更多相关文章
- hdu 5667 BestCoder Round #80 矩阵快速幂
Sequence Accepts: 59 Submissions: 650 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- BestCoder Round #80 1002
HDU 5666 Segment 题意:给你条斜率为-1,常数项为q(q为质数)的直线,连接原点与直线上整数格点,问你在有多少个格点在形成的无数个三角形内,而不在线段上,结果对P取模. 思路:best ...
- Bestcoder Round# 80
[1003 Sequence] 指数循环节,注意a mod p = 0的情况.此时你的循环节如果返回0,这时你会输出1,而实际上应该是0 #include <algorithm> #inc ...
- hdu5666 BestCoder Round #80
Segment Accepts: 418 Submissions: 2020 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 6553 ...
- hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】
#include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...
- css 填坑常用代码分享
以下是常用的代码收集,没有任何技术含量,只是填坑的积累.转载请注明出处,谢谢. 因为提交比较麻烦,后来转置github:https://github.com/jsfront/src/blob/mast ...
- Node学习笔记(四):gulp+express+io.socket部署angularJs2(填坑篇)
这篇就先暂停下上篇博客--你画我猜的进度,因为在做这个游戏的时候,想采用最新的ng2技术,奈何坑是一片又一片,这边就先介绍下环境部署和填坑史 既然要用ng2,首先要拿到资源,我这边用的是angular ...
- BestCoder Round #89 02单调队列优化dp
1.BestCoder Round #89 2.总结:4个题,只能做A.B,全都靠hack上分.. 01 HDU 5944 水 1.题意:一个字符串,求有多少组字符y,r,x的下标能组成等比数列 ...
- bestcoder Round #7 前三题题解
BestCoder Round #7 Start Time : 2014-08-31 19:00:00 End Time : 2014-08-31 21:00:00Contest Type : ...
随机推荐
- hibernate 延长加载范围
1. 关闭延迟加载功能 lazy="false"2.修改抓取策略 fetch="join"直接查询关联数据,一个联接查询搞定3.使用Hibernate对象的in ...
- python 2.7.5升级到3.4.x
wget https://www.python.org/ftp/python/3.4.3/Python-3.4.3.tgz .tgz cd Python-/ Python ./configure ma ...
- 杀死tomcat进程
由于tomcat运行时eclipse非法关闭,导致tomcat进程没有关闭,再次启动eclipse,启动tomcat会报tomcat不能启动,且指出端口被占用.笔者解决方案如下: 方案一:重启电脑,简 ...
- fluent仿真数值错误
- python操作excel的读写
1.下载xlrd和xlwt pip install xlwd pip install xlrd pip install xlutils 2.读写操作(已存在的excel) #-*- coding:ut ...
- JAVA input/output 流层次关系图
在java中,input和output流种类繁多,那么它们之间是否有关系呢?答案是肯定的,其中使用到了设计模式,装饰模式 下图来自于HEAD FIRST 设计模式 装饰模式一章 下图来自网络博客:ht ...
- Android中SQLite查询date类型字段出现有返回但是为错误值的情况
出现该情况的原因是因为查询精度与数据库中存储精度不相同造成的,例如,查询精度为 YYYY-MM-DD 但是存储精度为 YYYY-MM-DD HH:MM:SS,就会出现该错误. 更改查询精度为YYYY- ...
- php中COM函数的使用
php里的com类可以操作window系统上的东西 例如:可以在本地打开一个word文档,然后写入东西,只用于window系统 需要加载php_com_dotnet.dll模块 $word = n ...
- latex公式怎么变成图片格式
由于这几天正在复习高中的数学,想写一些博客记录一下,发现数学公式的输入是一个问题,后来知道了latex,去youtube学习了一点入门教程发现挺简单的,不过有一个问题,latex生成的是pdf格式啊, ...
- UltraISO制作系统ISO镜像
一.简介 UltraISO是一款功能强大而又方便实用的光盘映像文件制作/编辑/转换工具,它可以直接编辑ISO文件和从ISO中提取文件和目录,也可以从CD-ROM制作光盘映像或者将硬盘上的文件制作成IS ...