There are N towns on a plane. The i-th town is located at the coordinates (xi,yi). There may be more than one town at the same coordinates.

You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|ac|,|bd|) yen (the currency of Japan). It is not possible to build other types of roads.

Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this?

Constraints

  • 2≤N≤105
  • 0≤xi,yi≤109
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N
x1 y1
x2 y2
:
xN yN

Output

Print the minimum necessary amount of money in order to build roads so that it will be possible to travel between every pair of towns by traversing roads.

Sample Input 1

3
1 5
3 9
7 8

Sample Output 1

3

Build a road between Towns 1 and 2, and another between Towns 2 and 3. The total cost is 2+1=3 yen.

Sample Input 2

6
8 3
4 9
12 19
18 1
13 5
7 6

Sample Output 2

8

两点之间的距离定义min( |a-b|,|c-d| ),就是切比雪夫距离;
我们要求这样的定义下的最小生成树;
考虑Kruskal算法:每次选取距离最小的边加入其中且保证不能出现环;
那么我们分别按照x,y进行排序;
最后再统一排序即可;
此时进行普通的Kruskal即可;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int tot;
struct node {
int x, y;
int d;
node(){}
node(int x,int y,int d):x(x),y(y),d(d){} }nd[maxn],nd2[maxn]; bool cmp(node a, node b) {
return a.x < b.x;
}
bool cmp2(node a, node b) {
return a.y < b.y;
} bool cmp3(node a, node b) {
return a.d < b.d;
} int fa[maxn];
void init() {
for (int i = 0; i <= n; i++)fa[i] = i;
}
int findfa(int x) {
if (x == fa[x])return x;
return fa[x] = findfa(fa[x]);
} void merge(int u, int v) {
int p = findfa(u);
int q = findfa(v);
if (p != q) {
fa[p] = q;
}
} bool chk(int x, int y) {
if (findfa(x) == findfa(y))return true;
else return false;
} int kruskal() {
int sum = 0;
init();
for (int i = 0; i < tot; i++) {
node tmp = nd2[i];
if (tmp.d == 0)merge(tmp.x, tmp.y);
if (!chk(tmp.x, tmp.y)) {
merge(tmp.x, tmp.y); sum += tmp.d;
}
}
return sum;
} int main() {
// ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) {
rdint(nd[i].x); rdint(nd[i].y);
nd[i].d = i;
}
tot = 0;
sort(nd + 1, nd + 1 + n, cmp);
for (int i = 2; i <= n; i++) {
nd2[tot++] = node(nd[i].d, nd[i - 1].d, nd[i].x - nd[i - 1].x);
}
sort(nd+1, nd + n+1, cmp2);
for (int i = 2; i <= n; i++) {
nd2[tot++] = node(nd[i].d, nd[i - 1].d, nd[i].y - nd[i - 1].y);
}
sort(nd2, nd2 + tot, cmp3);
int sum = kruskal();
cout << sum << endl;
return 0;
}

atcoder 2643 切比雪夫最小生成树的更多相关文章

  1. Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]

    题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...

  2. AtCoder Regular Contest 076

    在湖蓝跟衡水大佬们打的第二场atcoder,不知不觉一星期都过去了. 任意门 C - Reconciled? 题意:n只猫,m只狗排队,猫与猫之间,狗与狗之间是不同的,同种动物不能相邻排,问有多少种方 ...

  3. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  4. 【AtCoder2134】ZigZag MST(最小生成树)

    [AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...

  5. 【Atcoder】CODE FESTIVAL 2017 qual A D - Four Coloring

    [题意]给定h,w,d,要求构造矩阵h*w满足任意两个曼哈顿距离为d的点都不同色,染四色. [算法]结论+矩阵变换 [题解] 曼哈顿距离是一个立着的正方形,不方便处理.d=|xi-xj|+|yi-yj ...

  6. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  7. AtCoder ARC 076D - Built?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_b 本题是一个图论问题——Manhattan距离最小生成树(MST). 在一个平面网格上有n个格点, ...

  8. AtCoder,Codeforces做题记录

    AGC024(5.20) 总结:猜结论,“可行即最优” B: 给定一个n的排列,每次可以将一个数移到开头或结尾,求变成1,2,...,n所需的最小步数. 找到一个最长的i,i+1,...,j满足在排列 ...

  9. [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)

    [AtCoder] NIKKEI Programming Contest 2019   本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...

随机推荐

  1. Ubuntu登录异常: 输入正确的密码, 但是却无法进入系统, 总是返回到登录界面, 但是用ctrl+alt+F1-F文字界面登录都可以进入。

    今天打开电脑的时候, 在输入密码之后, 未进入ubuntu的桌面, 而是显示了几行英文之后有返回到了登录界面.显示的英文如下: could not write bytes: Broken pipe   ...

  2. C#改变LInqToSQL的引用地址,读取config的数据库字符串

    C#改变LInqToSQL的引用地址,读取config的数据库字符串修改Properties 下 Settings.Settings 下 Settings.Designer.cs 下 return ( ...

  3. leetcode516

    public class Solution { public int LongestPalindromeSubseq(string s) { int[,] dp = new int[s.Length, ...

  4. Spring装配各种类型bean

    一.单属性值的装配 //setter注入,提供无参构造器,提供setXX方法 <property name="" value=""></pro ...

  5. 面试题:AOP面向切面编程

    //创建一个与代理对象相关联的InvocationHandler InvocationHandler stuHandler = new MyInvocationHandler<Person> ...

  6. C++ 成员函数前和函数后加const修饰符区别

    博客转载自: https://www.iteblog.com/archives/214.html 分析以下一段程序,阐述成员函数后缀const 和 成员函数前const 的作用 #include< ...

  7. PCL—点云分割(超体聚类) 低层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5013968.html 1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是 ...

  8. Flash of Unstyled Content (FOUC)

    在这次的产品发布中,客户发现了一个问题,就是在Firefox浏览器中,页面在加载的时候,出现没有样式的内容一闪而过的现象.其实,在测试过程中,我们也看到了类似的问题,但是并没有意识到这是一个问题,以为 ...

  9. C语言-郝斌笔记-003数据类型

    基本类型数据 整数 整型     —— int      --4字节  短整型   —— short int   ——2字节 长整型   —— long int    ——8字节      浮点数[实 ...

  10. 后台执行UNIX/Linux命令和脚本的五种方法

    hiveserver 后台启动 nohup "${HIVE_HOME}"/bin/hive --service hiveserver2 & 1. 使用&符号在后台执 ...