\(\color{#0066ff}{ 题目描述 }\)

众所周知,czmppppp是数学大神犇。一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了。。。

给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N)。

\(\color{#0066ff}{输入格式}\)

第一行一个数T,表示有T组数据。

对于每组数据,一行,一个正整数N。

\(\color{#0066ff}{输出格式}\)

T行,每行为对应答案。

\(\color{#0066ff}{输入样例}\)

3
1
2
5

\(\color{#0066ff}{输出样例}\)

1
4
55

\(\color{#0066ff}{数据范围与提示}\)

对于30%的数据,1≤T≤5,1≤N≤100000

对于100%的数据,1≤T≤300000,1≤N≤1000000

\(\color{#0066ff}{ 题解 }\)

题目要求

\[\sum_{i=1}^n lcm(i,n)
\]

转为gcd形式

\[n*\sum_{i=1}^n \frac{i}{gcd(i,n)}
\]

枚举gcd

\[\sum_{d=1}^n n\sum_{i=1}^n [gcd(i,n)==d] \frac i d
\]

把d弄前面去

\[n\sum_{d|n}\sum_{i=1}^{\lfloor\frac n d \rfloor} [gcd(i,\frac n d)==1] i
\]

额,后面的的东西就是与一个数互质的数的和

但是我们只能求个数

考虑若\(gcd(i,n)=1\),则\(gcd(n-i,n)=1\)

显然i一定成对出现

要特判一下1

所以,原式可以变为

\[n\sum_{d|n} \frac {\varphi(\lfloor\frac n d \rfloor)*\lfloor\frac n d \rfloor + 1} {2}
\]

这样最后的复杂度是\(O(T\sqrt n)\)的

不太好卡进去

因为时间浪费在了枚举因子

看到题目n的范围,显然可以开一个数组记录n的答案

这样是\(O(T+n\sqrt n)\)的

考虑枚举倍数,减少无用枚举

\(O(T+nlogn)\)可过

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e6 + 10;
LL ans[maxn], phi[maxn], pri[maxn], tot;
bool vis[maxn];
LL getans(LL n) {
return (phi[n] * n + 1) >> 1;
}
void predoit() {
phi[1] = 1;
for(int i = 2; i < maxn; i++) {
if(!vis[i]) pri[++tot] = i, phi[i] = i - 1;
for(int j = 1; j <= tot && (LL)i * pri[j] < maxn; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) {
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
else phi[i * pri[j]] = phi[i] * (pri[j] - 1);
}
}
for(int i = 1; i < maxn; i++)
for(int j = i; j < maxn; j += i)
ans[j] += getans(j / i);
}
int main() {
predoit();
for(int T = in(); T --> 0;) {
LL n = in();
printf("%lld\n", n * ans[n]);
}
return 0;
}

P1891 疯狂LCM的更多相关文章

  1. 洛谷 - P1891 - 疯狂LCM - 线性筛

    另一道数据范围不一样的题:https://www.cnblogs.com/Yinku/p/10987912.html $F(n)=\sum\limits_{i=1}^{n} lcm(i,n) $ $\ ...

  2. 题解:洛谷P1891 疯狂LCM

    原题链接 题目描述 描述: 众所周知,czmppppp是数学大神犇.一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了... 给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N) ...

  3. 洛谷 P1891 疯狂LCM 题解

    原题链接 享受推式子的乐趣吧 数论真有趣! 庆祝:数论紫题第 \(3\) 道. \[\sum_{i=1}^n \operatorname{lcm}(i,n) \] \[= \sum_{i=1}^n \ ...

  4. luogu P1891 疯狂LCM

    嘟嘟嘟 这题跟上一道题有点像,但是我还是没推出来--菜啊 \[\begin{align*} ans &= \sum_{i = 1} ^ {n} \frac{i * n}{gcd(i, n)} ...

  5. 洛咕 【P1891】疯狂LCM & 三倍经验

    经验给掉先: 经验*1 经验*2 经验*3 这里给个跑得比较慢的 \(n \sqrt n\) 预处理然后 \(O(1)\) 回答询问的做法 式子 首先我们推柿子: \[\begin{aligned}A ...

  6. luogu1891 疯狂lcm ??欧拉反演?

    link 给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N). 多组询问,1≤T≤300000,1≤N≤1000000 \(\sum_{i=1}^nlcm(i,n)\) \( ...

  7. [Luogu1891]疯狂LCM[辗转相减法]

    题意 多组询问,每次给定 \(n\) ,求:\(\sum_{i=1}^nlcm(i,n)\) . \(\rm T \leq 3\times 10^4\ ,n \leq 10^6\). 分析 推式子: ...

  8. 疯狂LCM

    传送门 题目要求求: \[\sum_{i=1}^nlcm(i,n)\] 先转化成gcd处理: \[n\sum_{i=1}^n\frac{i}{gcd(i,j)}\] 之后老套路 枚举gcd,并且先把d ...

  9. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

随机推荐

  1. web.xml中classpath表示什么样的路径

    首先  classpath是指 WEB-INF文件夹下的classes目录 解释classes含义: 1.存放各种资源配置文件 eg.init.properties log4j.properties ...

  2. mybatis---demo1--(单表增删改查)----bai

    实体类: package com.etc.entity; public class News { private int id; private String title; private Strin ...

  3. [MySQL]表创建外键失败:ERROR 1005 (HY000): Can't create table (errno: 150)

    在数据库中建立一个新表(表引擎为InnoDB)时, 需要用到外键, 所以就在建表的时候加了一句foreign key (column) references table_name.但是执行时出现 ER ...

  4. DLL 演示

    编写DLL时的函数与一般的函数方法基本一样.但要对库中的函数进行必要的声明,以说明哪些函数是可以导出的,哪些函数是不可以导出的. 把DLL中的函数声明为导出函数的方法有两种: 一是使用关键字_decl ...

  5. C语言学习笔记--递归函数

    1. 递归函数的思想 (1)递归是一种数学上分而自治的思想,是将大型复杂问题转化为与原问题相同但规模较小的问题进行处理的一种方法 (2)递归需要有边界条件 ①当边界条件不满足时,递归继续进行 ②当边界 ...

  6. 安卓读取SD卡的容量

    在开发中,我们经常会用到SD卡,那么在对SD卡进行读写的时候,我们经常需要判断SD卡的剩余容量是否足够.因此,这次我们来写写获取SD卡容量的程序. 该注意的地方,我都在程序里面有注明了.看程序基本就懂 ...

  7. Ros学习topic——小海龟

    ROS Topics 1.rqt_graph:创建一个显示当前系统运行情况的动态图形 安装 $ sudo apt-get install ros-<distro>-rqt $ sudo a ...

  8. PCL—关键点检测(NARF)低层次点云处理

    博客转载自:http://www.cnblogs.com/ironstark/p/5051533.html 关键点检测本质上来说,并不是一个独立的部分,它往往和特征描述联系在一起,再将特征描述和识别. ...

  9. ElasticSearch 入门(转)

    最大的特点: 1. 数据库的 database, 就是  index 2. 数据库的 table,  就是 tag 3. 不要使用browser, 使用curl来进行客户端操作.  否则会出现 jav ...

  10. Overloaded的方法是否可以改变返回值的类型

    摘要: 重载Overload表示同一个类中可以有多个名称相同的方法,但这些方法的参数列表各不相同(即参数个数或类型不同) Overload是重载的意思,Override是覆盖的意思,也就是重写. 重载 ...