Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are kdifferent primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.

 
Output
For each test case output the correct combination on a line.
 
Sample Input
1
9 5 2
3 5
 
Sample Output
6
 
Source
 

题目大意:让求C(n,m)%(∏pi) 这个式子的值。

中国剩余定理:

解题思路:首先用lucas定理将求C(a,b)%p转化成求解∏C(bi,ai),这样,我们可以得到c[i]数组。然后用中国剩余定理来求x0的值,即为答案。在求解的过程中需要用到扩展欧几里得来求解Mi的逆元,由于Mi比较大,所以在乘积的时候会爆数据范围,所以改成快速乘取模的方式代替直接乘积。

#include<bits/stdc++.h>
using namespace std;
typedef long long INT;
const int maxp=1e5+200;
INT p[15],c[15];
INT fac[maxp],inv[maxp];
INT powmod(INT a,INT n,INT mod){//快速幂取模
INT ret=1;
while(n){
if(n&1){
ret=ret*a%mod;
}
n>>=1;
a = a*a%mod;
}
return ret;
}
INT mulmod(INT a,INT b,INT mod){//快速乘取模
a = (a%mod + mod) % mod; //用扩展欧几里得求出的值可能为负值
b = (b%mod + mod) % mod; //用扩展欧几里得求出的值可能为负值
INT ret=0;
while(b){
if(b&1){
ret = (ret+a)%mod;
}
b >>= 1;
a = (a<<1) % mod;
}
return ret;
}
void init(INT n){ //递推出来阶乘和逆元数组
fac[0]=1;
for(int i=1;i<n;i++){
fac[i]=fac[i-1]*i % n;
}
inv[n-1]=powmod(fac[n-1],n-2,n);
for(int i=n-2;i>=0;i--){
inv[i] = inv[i+1] * (i+1) % n;
//fac[n]*inv[fac[n]]≡1%p ==> fac[n-1]*(n*inv[fac[n]])≡1%p
}
}
INT cm(INT n,INT m,INT mod){ //用逆元求组合数取模
if(n<0||m<0||m>n){
return 0;
}
return fac[n]*inv[n-m]%mod*inv[m]%mod;
}
INT lucas(INT n,INT m,INT mod){//lucas递归求P进制时的c
if(m==0){
return 1;
}
return lucas(n/mod,m/mod,mod) * cm(n%mod,m%mod,mod) % mod;
}
INT exgcd(INT a,INT b,INT &x,INT &y){ //求b关于模a的逆元。放在y中
if(b==0) { x = 1; y = 0; return a; }
INT d = exgcd(b, a%b , y, x);
y -= x * (a / b);
return d;
}
void CRT(INT k){//中国剩余定理求解一元线性同余方程组
INT M=1,x,y;
INT ans=0;
for(int i=1;i<=k;i++){
M *= p[i];
}
for(int i=1;i<=k;i++){
INT Mi=M/p[i];
exgcd(p[i],Mi,x,y);
ans = (ans+mulmod(mulmod(y,Mi,M),c[i],M))%M ;
}
printf("%I64d\n",ans);
}
int main(){
INT n,m,k;
int t;
scanf("%d",&t);
while(t--){
scanf("%I64d%I64d%I64d",&n,&m,&k);
for(int i=1;i<=k;i++){
scanf("%I64d",&p[i]);
init(p[i]);
c[i] = lucas(n,m,p[i]);
}
CRT(k);
}
return 0;
}

  

HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】的更多相关文章

  1. HDU 5446 Unknown Treasure(Lucas定理+CRT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] ...

  2. Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)

    题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...

  3. HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘

    HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k])     0< n,m < 1018 思路:这题基本上算是模版题了 ...

  4. HDU 5446 Unknown Treasure Lucas+中国剩余定理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 Unknown Treasure 问题描述 On the way to the next se ...

  5. hdu 5446 Unknown Treasure lucas和CRT

    Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. hdu 5446 Unknown Treasure Lucas定理+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  7. hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  8. ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)

    Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...

  9. HDU 5446 Unknown Treasure

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

随机推荐

  1. SuperSocket1.6电子书离线版

    使用离线浏览器制作,格式为chm,本人不对电子书内容具有任何权利!简体中文,适用于.NET开发. 下载地址

  2. P与NP问题详解

    P,NP,NPC问题,这或许是众多OIer最大的误区之一. 本文就为大家详细讲解如上三个问题. 前序: 你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题了”之 ...

  3. Kafka 练习题

    一.选择题 Kafka服务器默认能接收的最大消息是多大? (单选) A A:1M B:10M C:100M D:没有大小限制,因为支持大数据 2.Kafka的特性(多选)  ABCD A:高吞吐量.低 ...

  4. asp.net core 自定视图主题 实现IViewLocationExpander接口

    新建ThemeViewLocationExpander.cs 实现IViewLocationExpander接口 /// <summary> /// 自定视图主题 实现IViewLocat ...

  5. 解决部分在Debug模式下程序没问题但是Release模式下出现问题的方法

    编译策略介绍 关于优化级别:GCC_OPTIMIZATION_LEVEL 描述如下 None: Do not optimize.  [-O0]With this setting, the compil ...

  6. [ZJOI2009]函数 BZOJ1432

    题目描述 有n 个连续函数fi (x),其中1 ≤ i ≤ n.对于任何两个函数fi (x) 和fj (x),(i != j),恰好存在一个x 使得fi (x) = fj (x),并且存在无穷多的x ...

  7. PAT天梯赛 L1-050 倒数第N个字符串

    题目链接:点击打开链接 给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增.例如当 L 为 3 时,序列为 { aaa, ...

  8. springboot整合mybatis,redis,代码(五)

    redis注解开发过程中包含许多注解 1.@Cacheable 可以标记在方法上,也可以标记在类上.当标记在方法上时表示该方法是支持缓存的,当标记在类上时则表示该类所有的方法都是支持缓存的.应用到读取 ...

  9. C3算法之我见

    C3算法说到底就是merge算法,看了一些帖子,总结说得莫名其妙,大家也是抄来抄去,我试着用自己的话来把这个东西怎么操作的说清楚.当然了我也要抄一些别人的,但是我会 尽量把我认为别人没有讲清楚的那一部 ...

  10. C语言把字符串转换为数字

    C当中有一些函数专门用于把字符串形式转换成数值形式. printf()函数和sprintf()函数 -->通过转换说明吧数字从数字形式转换为字符串形式: scanf()函数把输入字符串转换为数值 ...