https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial

Octave Tutorial

5 试题

1.

Suppose I first execute the following Octave commands:

A = [1 2; 3 4; 5 6];

B = [1 2 3; 4 5 6];

Which of the following are then valid Octave commands? Check all that apply and assume all options are written in an Octave command. (Hint: A' denotes the transpose of A.)

C = A * B;

C = B' + A;

C = A' * B;

C = B + A;

答案: ab (C = A * B 和 C = B' + A;)

2.

Question text

Let A=⎡⎣⎢⎢16594211714310615138121⎤⎦⎥⎥.

Which of the following indexing expressions gives B=⎡⎣⎢⎢16594211714⎤⎦⎥⎥? Check all that apply.

B = A(:, 1:2);

B = A(1:4, 1:2);

B = A(0:2, 0:4)

B = A(1:2, 1:4);

答案 :ab (B = A(:, 1:2);和 B = A(1:4, 1:2);)

3.

Let A be a 10x10 matrix and x be a 10-element vector. Your friend wants to compute the product Ax and writes the following code:

v = zeros(10, 1);

for i = 1:10

for j = 1:10

v(i) = v(i) + A(i, j) * x(j);

end

end

How would you vectorize this code to run without any FOR loops? Check all that apply.

v = A * x;

v = Ax;

v =x'* A;

v = sum (A * x);

答案: a. v = A * x;

v = Ax :Undefined function or variable 'Ax'.

4.

Say you have two column vectors v and w, each with 7 elements (i.e., they have dimensions 7x1). Consider the following code:

z = 0;

for i = 1:7

z = z + v(i) * w(i)

end

Which of the following vectorizations correctly compute z? Check all that apply.

z = sum (v .* w);

z = w' * v;

z = v * w';

z = w * v';

答案: ab (z = sum (v .* w);和 z = w' * v; )

column vectors 列向量

5.

In Octave, many functions work on single numbers, vectors, and matrices. For example, the sin function when applied to a matrix will return a new matrix with the sin of each element. But you have to be careful, as certain functions have different behavior. Suppose you have an 7x7 matrix X. You want to compute the log of every element, the square of every element, add 1 to every element, and divide every element by 4. You will store the results in four matrices, A,B,C,D. One way to do so is the following code:

for i = 1:7

for j = 1:7

A(i, j) = log(X(i, j));

B(i, j) = X(i, j) ^ 2;

C(i, j) = X(i, j) + 1;

D(i, j) = X(i, j) / 4;

end

end

Which of the following correctly compute A,B,C, or D? Check all that apply.

C = X + 1;

D = X / 4;

B = X .^ 2;

B = X ^ 2;

答案: abc

B = X .^ 2 而不是 X ^ 2

Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial的更多相关文章

  1. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

  2. Coursera machine learning 第二周 编程作业 Linear Regression

    必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...

  3. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  4. 吴恩达Machine Learning 第一周课堂笔记

    1.Introduction 1.1 Example        - Database mining        Large datasets from growth of automation/ ...

  5. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记

    第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...

  6. Coursera Machine Learning 作业答案脚本 分享在github上

    Github地址:https://github.com/edward0130/Coursera-ML

  7. Coursera, Machine Learning, notes

      Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machine ...

  8. Coursera Machine Learning : Regression 评估性能

    评估性能 评估损失 1.Training Error 首先要通过数据来训练模型,选取数据中的一部分作为训练数据. 损失函数可以使用绝对值误差或者平方误差等方法来计算,这里使用平方误差的方法,即: (y ...

  9. Coursera Machine Learning : Regression 多元回归

    多元回归 回顾一下简单线性回归:一个特征,两个相关系数 实际的应用要比这种情况复杂的多,比如 1.房价和房屋面积并不只是简单的线性关系. 2.影响房价的因素有很多,不仅仅是房屋面积,还包括很多其他因素 ...

随机推荐

  1. MySQL索引,MySQL中索引的限制?

    MySQL中索引的限制: 1.MyISAM存储引擎引键的长度综合不能超过1000字节: 2.BLOB和TEXT类型的列只能创建前缀索引: 3.MySQL目前不支持函数索引: 4.使用!= 或者< ...

  2. The newly created daemon process has a different context than expected

    Error: The newly created daemon process has a different context than expected. It won't be possible ...

  3. easyui text-box multiline

    //多行文本输入框 <input id="payDescribe" class="easyui-textbox" data-options="m ...

  4. paho-mqtt

    mqtt 参考: https://pypi.org/project/paho-mqtt/ https://github.com/eclipse/paho.mqtt.python #服务端 [root@ ...

  5. 2017.10.13 git提交时忽略不必要的文件或文件夹

    参考来自:git学习六:git提交忽略不必要的文件或文件夹 1.应用场景 创建maven项目,使用git提交,有时需要忽略不必要的文件或文件夹,只保留一些基本. 例如如下截图,实际开发中我们只需提交: ...

  6. RAP + MOCK

    前后端分离式开发的思考 目前大部分公司都实行了前后端分离开发.然而在项目开发过程当中,经常会遇到以下几个尴尬的场景: 1.前端开发依赖于后端接口数据,需要与后端接口联调才能获得数据展示,从而拖慢了开发 ...

  7. odoo12新特性: 会计改进

    改进分析会计 分析会计层级结构 分析分配 分析分录增加了表格视图     ============== SPECIFICATIONS ============== a. Hierarchy  - Cr ...

  8. 【Excle数据透视表】如何利用图标集将销售数据划分为五个等级

    我们如何用图标集来直观看出订单情况呢? 现在有数据如下: 步骤 选中"订单列"→开始→条件格式→图标集→等级→ 此时,在每个数字前面都出现了一个等级符号了 查看预置五等级图标集的规 ...

  9. 隔行换色table

    <style type="text/css"> table { margin: 0 auto; width: 600px; } table { border: 1px ...

  10. ThinkPHP连接主从数据库

    config.php文件设置如下: return array( 'URL_MODE'=>0,   'DB_TYPE'=>'mysql',   'DB_HOST'=>'localhos ...