https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial

Octave Tutorial

5 试题

1.

Suppose I first execute the following Octave commands:

A = [1 2; 3 4; 5 6];

B = [1 2 3; 4 5 6];

Which of the following are then valid Octave commands? Check all that apply and assume all options are written in an Octave command. (Hint: A' denotes the transpose of A.)

C = A * B;

C = B' + A;

C = A' * B;

C = B + A;

答案: ab (C = A * B 和 C = B' + A;)

2.

Question text

Let A=⎡⎣⎢⎢16594211714310615138121⎤⎦⎥⎥.

Which of the following indexing expressions gives B=⎡⎣⎢⎢16594211714⎤⎦⎥⎥? Check all that apply.

B = A(:, 1:2);

B = A(1:4, 1:2);

B = A(0:2, 0:4)

B = A(1:2, 1:4);

答案 :ab (B = A(:, 1:2);和 B = A(1:4, 1:2);)

3.

Let A be a 10x10 matrix and x be a 10-element vector. Your friend wants to compute the product Ax and writes the following code:

v = zeros(10, 1);

for i = 1:10

for j = 1:10

v(i) = v(i) + A(i, j) * x(j);

end

end

How would you vectorize this code to run without any FOR loops? Check all that apply.

v = A * x;

v = Ax;

v =x'* A;

v = sum (A * x);

答案: a. v = A * x;

v = Ax :Undefined function or variable 'Ax'.

4.

Say you have two column vectors v and w, each with 7 elements (i.e., they have dimensions 7x1). Consider the following code:

z = 0;

for i = 1:7

z = z + v(i) * w(i)

end

Which of the following vectorizations correctly compute z? Check all that apply.

z = sum (v .* w);

z = w' * v;

z = v * w';

z = w * v';

答案: ab (z = sum (v .* w);和 z = w' * v; )

column vectors 列向量

5.

In Octave, many functions work on single numbers, vectors, and matrices. For example, the sin function when applied to a matrix will return a new matrix with the sin of each element. But you have to be careful, as certain functions have different behavior. Suppose you have an 7x7 matrix X. You want to compute the log of every element, the square of every element, add 1 to every element, and divide every element by 4. You will store the results in four matrices, A,B,C,D. One way to do so is the following code:

for i = 1:7

for j = 1:7

A(i, j) = log(X(i, j));

B(i, j) = X(i, j) ^ 2;

C(i, j) = X(i, j) + 1;

D(i, j) = X(i, j) / 4;

end

end

Which of the following correctly compute A,B,C, or D? Check all that apply.

C = X + 1;

D = X / 4;

B = X .^ 2;

B = X ^ 2;

答案: abc

B = X .^ 2 而不是 X ^ 2

Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial的更多相关文章

  1. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

  2. Coursera machine learning 第二周 编程作业 Linear Regression

    必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...

  3. Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)

    Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...

  4. 吴恩达Machine Learning 第一周课堂笔记

    1.Introduction 1.1 Example        - Database mining        Large datasets from growth of automation/ ...

  5. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记

    第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...

  6. Coursera Machine Learning 作业答案脚本 分享在github上

    Github地址:https://github.com/edward0130/Coursera-ML

  7. Coursera, Machine Learning, notes

      Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machine ...

  8. Coursera Machine Learning : Regression 评估性能

    评估性能 评估损失 1.Training Error 首先要通过数据来训练模型,选取数据中的一部分作为训练数据. 损失函数可以使用绝对值误差或者平方误差等方法来计算,这里使用平方误差的方法,即: (y ...

  9. Coursera Machine Learning : Regression 多元回归

    多元回归 回顾一下简单线性回归:一个特征,两个相关系数 实际的应用要比这种情况复杂的多,比如 1.房价和房屋面积并不只是简单的线性关系. 2.影响房价的因素有很多,不仅仅是房屋面积,还包括很多其他因素 ...

随机推荐

  1. tiny4412 串口驱动分析八 --- log打印的几个阶段之内核启动阶段(printk tiny4412串口驱动的注册)

    作者:彭东林 邮箱:pengdonglin137@163.com 开发板:tiny4412ADK+S700 4GB Flash 主机:Wind7 64位 虚拟机:Vmware+Ubuntu12_04 ...

  2. jdk7 cpocurrent ForJoinPool

    19. 使用 ForkJoinPool 进行分叉和合并 ForkJoinPool 在 Java 7 中被引入.它和 ExecutorService 很相似,除了一点不同.ForkJoinPool 让我 ...

  3. JAVA实现网页快照,存为图片格式

    原文:http://blog.csdn.net/java2000_net/article/details/3643528 截取的google的效果,将就吧,不是特别好. 但是作为普通的应用,我想这个效 ...

  4. Ubuntu system zabbix-server-3.x install documentation

    Installing repository configuration package wget http://repo.zabbix.com/zabbix/3.0/ubuntu/pool/main/ ...

  5. ISP图像处理算法之---Demosaic

    目前市场上主流传感器为Coms传感器,sensor出来的的数据格式为bayer数据格式,这种格式,每个像素点只有三个颜色通道中的一个,如图1所示                             ...

  6. JAVA反射机制--静态加载与动态加载

    Java反射是Java被视为动态(或准动态)语言的一个关键性质.这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其modifiers(诸如pu ...

  7. 第14章5节《MonkeyRunner源代码剖析》 HierarchyViewer实现原理-装备ViewServer-查询ViewServer执行状态

    上一小节我们描写叙述了HierarchyViewer是怎样组建ADB协议命令来实现ViewServer的port转发的.在port转发设置好后,下一个要做的事情就是去检測目标设备端ViewServer ...

  8. Odoo12 重大改变

    Table of Contents 重构的功能 ORM 数据导入 库存 库存规则 MRP 多步路线 新功能 IoT     Odoo12 预计 2018/10 在 Odoo experience 20 ...

  9. Dungeon Master ZOJ 1940【优先队列+广搜】

    Problem Description You are trapped in a 3D dungeon and need to find the quickest way out! The dunge ...

  10. 【BIEE】07_调整BIEE柱子的显示顺序

    现在有报表如下: 但是我们觉得这种显示不好看,想把非优秀员工的柱子放在前边显示,那么如何调整呢? 调整步骤: [编辑分析] 我们将此处条形图下的两个标签顺序重新调整一下 从上图可以看出,效果明显!