一、HBase介绍

1、基本概念

HBase是一种Hadoop数据库,经常被描述为一种稀疏的,分布式的,持久化的,多维有序映射,它基于行键、列键和时间戳建立索引,是一个可以随机访问的存储和检索数据的平台。HBase不限制存储的数据的种类,允许动态的、灵活的数据模型,不用SQL语言,也不强调数据之间的关系。HBase被设计成在一个服务器集群上运行,可以相应地横向扩展。

2、HBase使用场景和成功案例

  • 互联网搜索问题:爬虫收集网页,存储到BigTable里,MapReduce计算作业扫描全表生成搜索索引,从BigTable中查询搜索结果,展示给用户。
  • 抓取增量数据:例如,抓取监控指标,抓取用户交互数据,遥测技术,定向投放广告等
  • 内容服务
  • 信息交互

3、HBase Shell命令行交互:

启动Shell    $ hbase shell

列出所有的表   hbase >  list

创建名为mytable的表,含有一个列族hb    hbase > create ' mytable' , 'hb'

在‘mytable’表的'first'行中的‘hb:data’列对应的数据单元中插入字节数组‘hello HBase’

hbase > put  'mytable' , 'first' , 'hb:data' , 'hello HBase'

读取mytable表 ‘first’行的内容   hbase > get 'mytable' , 'first'

读取mytable表所有的内容      hbase > scan ‘mytable'

二、入门

1、API

和数据操作有关的HBase API有5个,分别是 Get(读),Put(写),Delete(删),Scan(扫描)和Increment(列值递增)

2、操作表

首先要创建一个configuration对象

   Configuration conf = HBaseConfiguration.create();

使用eclipse时的话还必须将配置文件添加进来。
   conf.addResource(new Path("E:\\share\\hbase-site.xml"));

conf.addResource(new Path("E:\\share\\core-site.xml"));

conf.addResource(new Path("E:\\share\\hdfs-site.xml"));

   使用连接池创建一张表。

   HTablePool pool = new HTablePool(conf,1);
   HTableInterface usersTable = pool.getTable("users");

3、写操作

  用来存储数据的命令是put,往表里存储数据,需要创建Put实例。并制定要加入的行

  Put put = new Put(byte[]  row) ;

  Put的add方法用来添加数据,分别设定列族,限定符以及单元格的指

  put.add(byte[] family , byte[] qualifier , byte[] value) ;

  最后提交命令给表

  usersTable.put(put);

  usersTable.close();

  修改数据,只需重新提交一次最新的数据即可。

HBase写操作的工作机制:

HBase每次执行写操作都会写入两个地方:预写式日志(write-ahead log,也称HLog)和MemStore(写入缓冲区),以保证数据持久化,只有当这两个地方的变化信息都写入并确认后,才认为写动作完成。MemStore是内存里的写入缓冲区,HBase中数据在永久写入硬盘之前在这里累积,当MemStore填满后,其中的数据会刷写到硬盘,生成一个HFile。

4、读操作

创建一个Get命令实例,包含要查询的行

Get get = new Get(byte[]  row) ;

执行addColumn()或addFamily()可以设置限制条件。

将get实例提交到表会返回一个包含数据的Result实例,实例中包含行中所有列族的所有列。

Result  r = usersTable.get(get) ;

可以对result实例检索特定的值

byte[] b = r.getValue(byte[] family , byte[] qualifier) ;

工作机制:

BlockCache用来保存从HFile中读入内存的频繁访问的数据,避免硬盘读,每个列族都有自己的BlockCache。从HBase中读出一行,首先会检查MemStore等待修改的队列,然后检查BlockCache看包含该行的Block是否最近被访问过,最后访问硬盘上的对应HFile。

5、删除操作

创建一个Delete实例,指定要删除的行。

Delete delete = new Delete(byte[]  row) ;

可以通过deleteFamily()和deleteColumn()方法指定删除行的一部分。

6表扫描操作

Scan scan = new Scan() 可以指定起始行和结束行。

setStartRow() , setStopRow() , setFilter()方法可以用来限制返回的数据。

addColumn()和addFamily()方法还可以指定列和列族。

HBase模式的数据模型包括:

表:HBase用表来组织数据。

行:在表里,数据按行存储,行由行键唯一标识。行键没有数据类型,为字节数组byte[]。

列族:行里的数据按照列族分组,列族必须事先定义并且不轻易修改。表中每行拥有相同的列族。

列限定符:列族里的数据通过列限定符或列来定位,列限定符不必事先定义。

单元:存储在单元里的数据称为单元值,值是字节数组。单元由行键,列族或列限定符一起确定。

时间版本:单元值有时间版本,是一个long类型。

一个HBase数据坐标的例子:

HBase可以看做是一个键值数据库。HBase的设计是面向半结构化数据的,数据记录可能包含不一致的列,不确定大小等。

三、分布式的HBase、HDFS和MapReduce

1、分布式模式的HBase

HBase将表会切分成小的数据单位叫region,分配到多台服务器。托管region的服务器叫做RegionServer。一般情况下,RgionServer和HDFS DataNode并列配置在同一物理硬件上,RegionServer本质上是HDFS客户端,在上面存储访问数据,HMaster分配region给RegionServer,每个RegionServer托管多个region。

HBase中的两个特殊的表,-ROOT-和.META.,用来查找各种表的region位置在哪。-ROOT-指向.META.表的region,.META.表指向托管待查找的region的RegionServer。

一次客户端查找过程的3层分布式B+树如下图:

HBase顶层结构图:

zookeeper负责跟踪region服务器,保存root region的地址。

Client负责与zookeeper子集群以及HRegionServer联系。

HMaster负责在启动HBase时,把所有的region分配到每个HRegion Server上,也包括-ROOT-和.META.表。

HRegionServer负责打开region,并创建对应的HRegion实例。HRegion被打开后,它为每个表的HColumnFamily创建一个Store实例。每个Store实例包含一个或多个StoreFile实例,它们是实际数据存储文件HFile的轻量级封装。每个Store有其对应的一个MemStore,一个HRegionServer共享一个HLog实例。

一次基本的流程:

a、 客户端通过zookeeper获取含有-ROOT-的region服务器名。

b、 通过含有-ROOT-的region服务器查询含有.META.表中对应的region服务器名。

c、  查询.META.服务器获取客户端查询的行键数据所在的region服务器名。

d、 通过行键数据所在的region服务器获取数据。

HFile结构图:

Trailer有指向其他块的指针,Index块记录Data和Meta块的偏移量,Data和Meta块存储数据。默认大小是64KB。每个块包含一个Magic头部和一定数量的序列化的KeyValue实例。

KeyValue格式:

该结构以两个分别表示键长度和值长度的定长数字开始,键包含了行键,列族名和列限定符,时间戳等。

预写日志WAL:

每次更新都会写入日志,只有写入成功才会通知客户端操作成功,然后服务器可以按需自由地批量处理或聚合内存中的数据。

编辑流在memstore和WAL之间分流的过程:

处理过程:客户端通过RPC调用将KeyValue对象实例发送到含有匹配region的HRegionServer。接着这些实例被发送到管理相应行的HRegion实例,数据被写入到WAL,然后被放入到实际拥有记录的存储文件的MemStore中。当memstore中的数据达到一定的大小以后,数据会异步地连续写入到文件系统中,WAL能保证这一过程的数据不会丢失。

2、HBase和MapReduce

从MapReduce应用访问HBase有3种方式:

作业开始时可以用HBase作为数据源,作业结束时可以用HBase接收数据,任务过程中用HBase共享资源。

  • 使用HBase作为数据源

阶段map

protected void map(ImmutableBytesWritable rowkey,Result result,Context context){

};

从HBase表中读取的作业以[rowkey:scan result]格式接收[k1,v1]键值对,对应的类型是ImmutableBytesWritable和Result。

创建实例扫描表中所有的行

Scan scan = new Scan();

scan.addColumn(…);

接下来在MapReduce中使用Scan实例。

TableMapReduceUtil.initTableMapperJob(tablename,scan,map.class,

输出键的类型.class,输出值的类型.class,job);

  • 使用HBase接收数据

reduce阶段

protected void reduce(

ImmutableBytesWritable rowkey,Iterable<put>values,Context context){

};

把reducer填入到作业配置中,

TableMapReduceUtil.initTableReducerJob(tablename,reduce.class,job);

3、HBase实现可靠性和可用性

HDFS作为底层存储,为集群里的所有RegionServer提供单一命名空间,一个RegionServer读写数据可以为其它所有RegionServer读写。如果一个RegionServer出现故障,任何其他RegionServer都可以从底层文件系统读取数据,基于保存在HDFS里的HFile开始提供服务。接管这个RegionServerz服务的region。

四、优化HBase

1、随机读密集型

优化方向:高效利用缓存和更好的索引

  • 增加缓存使用的堆的百分比,通过参数 hfile.block.cache.size 配置。
  • 减少MemStore占用的百分比,通过hbase.regionserver.global.memstore.lowerLimit和hbase.regionserver.global.memstore.upperLimit来调节。
  • 使用更小的数据块,使索引的粒度更细。
  • 打开布隆过滤器,以减少为查找指定行的Key Value对象而读取的HFile的数量。
  • 设置激进缓存,可以提升随机读性能。
  • 关闭没有被用到随机读的列族,提升缓存命中率。

2、顺序读密集型

优化方向:减少使用缓存。

  • 增大数据块的大小,使每次硬盘寻道时间取出的数据更多。
  • 设置较高的扫描器缓存值,以便在执行大规模顺序读时每次RPC请求扫描器可以取回更多行。 参数 hbase.client.scanner.caching 定义了在扫描器上调用next方法时取回的行的数量。
  • 关闭数据块的缓存,避免翻腾缓存的次数太多。通过Scan.setCacheBlocks(false)设置。
  • 关闭表的缓存,以便在每次扫描时不再翻腾缓存。
  • 3、写密集型

优化方向:不要太频繁刷写,合并或者拆分。

  • 调高底层存储文件(HStoreFile)的最大大小,region越大意味着在写的时候拆分越少。通过参数 hbase.hregion.max.filesize设置。
  • 增大MemStore的大小,通过参数hbase.hregion.memstore.flush.size调节。刷写到HDFS的数据越多,生产的HFile越大,会在写的时候减少生成文件的数量,从而减少合并的次数。
  • 在每台RegionServer上增加分配给MemStore的堆比例。把upperLimit设为能够容纳每个region的MemStore乘以每个RegionServer上预期region的数量。
  • 垃圾回收优化,在hbase-env.sh文件里设置,可以设置初始值为:-Xmx8g  -Xms8g  -Xmn128m  -XX:+UseParNewGC  -XX:+UseConcMarkSweepGC

   -XX:CMSInitiatingOccupancyFraction=70

  • 打开MemStore-Local Allocation Buffer这个特性,有助于防止堆的碎片化。 通过参数hbase.hregion.memstore.mslab.enabled设置

4、混合型

优化方向:需要反复尝试各种组合,然后运行测试,得到最佳结果。

影响性能的因素还包括:

    • 压缩:可以减少集群上的IO压力
    • 好的行键设计
    • 在预期集群负载最小的时候手工处理大合并
    • 优化RegionServer处理程序计数

HBase 的Get(读),Put(写),Delete(删),Scan(扫描)和Increment(列值递增)的更多相关文章

  1. centos7.6+samba+设置可读可写不可删权限

    samba原文 https://www.cnblogs.com/muscleape/p/6385583.html 设置可读可写不可删权限原文: https://blog.51cto.com/guanh ...

  2. 移动端 h5 uniapp 读,写,删本地文件或sd文件

    移动端 h5 uniapp 读,写,删本地文件或sd文件 应用场景: 当我们需要做离线应用或者是加载本地文件时使用到此方法.(本篇文章给大家分享访问app私有文件目录,系统公共目录,sd外置存储的文件 ...

  3. HBase java API 的使用范例(增,删,查,扫描)

    编辑pom.xml <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase ...

  4. js对cookie的操作:读、写、删

    js读写cookie //JS操作cookies方法!//写cookiesfunction setCookie(name,value){var Days = 30;var exp = new Date ...

  5. java的poi技术读,写Excel[2003-2007,2010]

    在上一篇blog:java的poi技术读取Excel[2003-2007,2010] 中介绍了关于java中的poi技术读取excel的相关操作 读取excel和MySQL相关: java的poi技术 ...

  6. HDFS的工作原理(读和写操作)

    工作原理: NameNode和DateNode,NameNode相当于一个管理者,它管理集群内的DataNode,当客户发送请求过来后,NameNode会 根据情况指定存储到哪些DataNode上,而 ...

  7. [Android L]SEAndroid开放设备文件结点权限(读或写)方法(涵盖常用操作:sys/xxx、proc/xxx、SystemProperties)

    温馨提示      建议你先了解一下上一篇博文([Android L]SEAndroid增强Androd安全性背景概要及带来的影响)所讲的内容,先对SEAndroid窥个全貌,然后再继续本节内容.   ...

  8. Java NIO中的读和写

    一.概述 读和写是I/O的基本过程.从一个通道中读取只需创建一个缓冲区,然后让通道将数据读到这个缓冲区.写入的过程是创建一个缓冲区,用数据填充它,然后让通道用这些数据来执行写入操作. 二.从文件中读取 ...

  9. opener 属性是一个可读可写的属性,可返回对创建该窗口的 Window 对象的引用

    opener 属性是一个可读可写的属性,可返回对创建该窗口的 Window 对象的引用

随机推荐

  1. hmset()

    以哈希表方式存放数据

  2. Python程序设计4——控制语句

    1 print和import的更多信息 1.1 使用逗号输出 前面已经讲解过如何使用print来打印表达式,可以使用都好来打印多个表达式,只要用逗号隔开即可. >>> print ' ...

  3. sequoiadb的c++应用开发1

    使用sequoiadb开发c++应用时需要使用BSON对象,本篇主要讲下BSON的操作方面的东西 1:构建一个_id的BSON对象 BSON的c++驱动给我提供了一个宏BSON,使用该对象可以很方便的 ...

  4. 记一次OOM问题排查过程

    上周运维反馈线上程序出现了OOM,程序日志中的输出为 Exception in thread "http-nio-8080-exec-1027" java.lang.OutOfMe ...

  5. [译]Javascript中的本地以及全局变量

    本文翻译youtube上的up主kudvenkat的javascript tutorial播放单 源地址在此: https://www.youtube.com/watch?v=PMsVM7rjupU& ...

  6. C#修饰符讲解大全

    1.修饰符是什么? 修饰符是用于限定类型以及类型成员的声明的一种符号.[百度百科] 2.修饰符分类 13种修饰符,按功能可分为三类:访问修饰符,类修饰符和成员修饰符.[百度百科] 作 用:限定类型以及 ...

  7. 没固定公网 IP 的公司内网实现动态域名解析( 阿里云万网解析 )

    情景说明 前段时间应公司需求,需要将内网的服务映射到公网.由于公司使用的是类似家庭宽带的线路,没有固定的公网 IP 地址,所以决定使用域名来完成. 当时有几种方案: 1.花生壳:但是目前需要乱七八糟的 ...

  8. SourceTree——MAC OSX下的Git GUI客户端

    在MAC下面为Git找一款用得顺手的GUI客户端还真不容易.学习工具使用还是先器而后道的路径比较适合我,当年上手CVS SVN都是如此,先通过tortoise客户端熟练了基本操作,之后在搭建构建平台的 ...

  9. 20164305 徐广皓 Exp6 信息搜集与漏洞扫描

    信息搜集技术与隐私保护 间接收集 无物理连接,不访问目标,使用第三方信息源 使用whois/DNS获取ip 使用msf中的辅助模块进行信息收集,具体指令可以在auxiliary/gather中进行查询 ...

  10. server2008 IIS7配置全过程(包括发布ASP网站)

    一.安装IIS 1.打开服务器管理器->角色->添加角色,选中WEB服务器(IIS),记得要把包括之后出现的ASP相关的东西都选中并安装,安装成功后,打开http://localhost/ ...