[bzoj1833][ZJOI2010]count 数字计数——数位dp
题目:
(传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833]
题解:
第一次接触数位dp,真的是恶心。
首先翻阅了很多很多一维dp,因为要处理前缀0,所以根本搞不懂。
查询了dalaolidaxin的博客,又查阅了资料:
初探数位dp
才完全弄懂这个题。
具体的,我们设
f[i][j][k]为考虑所有i位数,最高位为j数,之中k的数目。
我们可以得出方程:
\]
\]
我们对这个方程作出解释:
前一项非常好理解,后一项的话就是前(i-1)位数共有\(10^{i-1}\)个,对于其中每一个,我们都可以在前面加k。
这样我们预处理出来了f。
然后我们考虑对于n分块计算。
以n = 4321为例。
首先统计3位及以下的数,这些数字没有限制,直接加就好。
然后统计4位数。
对于一个4位数,我们一位一位向下考虑,如果最高位<k,直接加,如果=k,加上n+1
具体见代码。
代码
#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
const int N = 25;
struct node {
ll a[N];
node() { memset(a, 0, sizeof(a)); }
ll &operator[](const int &x) { return a[x]; }
};
node operator+(const node &x, const node &y) {
node tmp;
for (int i = 0; i <= 9; i++)
tmp.a[i] = x.a[i] + y.a[i];
return tmp;
}
int len, a[N];
ll pow[N];
node f[N][N];
void init(ll n) {
len = 0;
while (n) {
a[++len] = n % 10;
n /= 10;
}
for (int i = 0; i <= 9; i++)
f[1][i][i] = 1;
for (int i = 2; i <= 14; i++) {
for (int j = 0; j <= 9; j++) {
for (int k = 0; k <= 9; k++)
f[i][j] = f[i][j] + f[i - 1][k];
f[i][j][j] += pow[i - 1];
}
}
}
node calc(ll n) {
node ans;
if (!n)
return ans;
memset(f, 0, sizeof(f));
init(n);
//统计前len-1位
for (int i = 1; i <= len - 1; i++) {
for (int j = 1; j <= 9; j++) {
ans = ans + f[i][j];
}
}
//开始统计len位数
for (int i = 1; i <= a[len] - 1; i++)
ans = ans + f[len][i];
n %= pow[len - 1];
ans[a[len]] += n + 1; //对于每一个最高位都可以统计一发
for (int i = len - 1; i; i--) {
for (int j = 0; j < a[i]; j++)
ans = ans + f[i][j];
n %= pow[i - 1];
ans[a[i]] += n + 1;
}
return ans;
}
int main() {
pow[0] = 1;
for (int i = 1; i <= 14; i++)
pow[i] = pow[i - 1] * 10;
ll x, y;
scanf("%lld %lld", &x, &y);
node ans1 = calc(y), ans2 = calc(x - 1);
for (int i = 0; i <= 8; i++)
printf("%lld ", ans1[i] - ans2[i]);
printf("%lld\n", ans1[9] - ans2[9]);
return 0;
}
[bzoj1833][ZJOI2010]count 数字计数——数位dp的更多相关文章
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- bzoj1833: [ZJOI2010]count 数字计数 数位dp
bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...
- 【BZOJ-1833】count数字计数 数位DP
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2494 Solved: 1101[Submit][ ...
- 1833: [ZJOI2010]count 数字计数——数位dp
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...
- BZOJ 1833 ZJOI2010 count 数字计数 数位DP
题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- [BZOJ1833][ZJOI2010]count 数字计数
[BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...
- BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】
题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...
- bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)
难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...
随机推荐
- POJ:3190-Stall Reservations
传送门:http://poj.org/problem?id=3190 Stall Reservations Time Limit: 1000MS Memory Limit: 65536K Total ...
- Balance POJ - 1837
Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...
- filter() 函数的使用
Python3 filter() 函数 描述 filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换. 该接收两个参数,第一个 ...
- Nginx模块详解
Nginx模块介绍 核心模块:core module 标准模块: HTTP modules: Standard HTTP modules Optional HTTP modules Mail modu ...
- MySQLSyntaxErrorException: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ':ge
数据库表里命名有这个字段,可怎么就是报错呢,大神的解释: 加上之后立马好用!!!
- PHP代码审计6-实战漏洞挖掘-xdcms用户注册页面漏洞
xdcms 源码:xdcms v2.0.8 1.配置 [一直下一步(仅为测试)] #数据库账号root,密码为空:管理员账号/密码:xdcms/xdcms #登录后台 2.查看后台登录页面的配置项[x ...
- PAT、PMT、SDT详解
下面针对解复用程序详细分析一下PAT,PMT和SDT三类表格的格式. 如下图,四个频道复用 PAT---Program Association Table,节目关联表 .PAT表携带以下信息: (1) ...
- linux下创建用户 费元星站长
linux下创建用户(一) Linux 系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统.用户的账号一方面可以帮助系 ...
- 《Cracking the Coding Interview》——第5章:位操作——题目7
2014-03-19 06:27 题目:有一个数组里包含了0~n中除了某个整数m之外的所有整数,你要设法找出这个m.限制条件为每次你只能用O(1)的时间访问第i个元素的第j位二进制位. 解法:0~n的 ...
- nginx清除反向代理缓存
nginx重启无法清除反向代理的缓存,可以清空安装目录下的proxy_cache文件夹里的内容来清除.