石子合并(一)

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述
    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
 
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239 据说这是一个区间dp问题
代码如下
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#define INF 999999999
int dp[][];
int stone[];
int sum[]; using namespace std; int main(int argc, char const *argv[])
{
int n;
while(scanf("%d",&n) != EOF) {
memset(dp, , sizeof(dp));
memset(sum, , sizeof(sum));
for(int i = ; i <= n; i++) {
scanf("%d",&stone[i]);
sum[i] = sum[i-]+stone[i];
}
for(int len = ; len <= n; len++) {
for(int i = ; i+len-<= n; i++) {
int j = i+len-;
dp[i][j] = INF;
for(int k = i; k < i+len-;k++) {
dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+][j]+sum[j]-sum[i-]);
}
}
}
printf("%d\n", dp[][n]);
}
return ;
}

dp[i][j]表示在区间i到j内合并所需要的最小代价

nyoj 题目737 合并石子(一)的更多相关文章

  1. NYOJ题目839合并

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAskAAAKgCAIAAADmrHcoAAAgAElEQVR4nO3dO1LsOheG4X8S5AyE2A

  2. dp优化-四边形不等式(模板题:合并石子)

    学习博客:https://blog.csdn.net/noiau/article/details/72514812 看了好久,这里整理一下证明 方程形式:dp(i,j)=min(dp(i,k)+dp( ...

  3. 合并石子(dp)

    合并石子 时间限制: 1 Sec  内存限制: 128 MB提交: 7  解决: 7[提交][状态][讨论版][命题人:quanxing] 题目描述 在一个操场上一排地摆放着N堆石子.现要将石子有次序 ...

  4. UESTC 886 方老师金币堆 --合并石子DP

    环状合并石子问题. 环状无非是第n个要和第1个相邻.可以复制该行石子到原来那行的右边即可达到目的. 定义:dp[i][j]代表从第i堆合并至第j堆所要消耗的最小体力. 转移方程:dp[i][j]=mi ...

  5. CodeForces-884D:Boxes And Balls(合并石子)

    Ivan has n different boxes. The first of them contains some balls of n different colors. Ivan wants ...

  6. Java实现 蓝桥杯 算法提高 合并石子

    算法提高 合并石子 时间限制:2.0s 内存限制:256.0MB 问题描述 在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数 ...

  7. NYOJ 737:石子合并(一)(区间dp)

    737-石子合并(一) 内存限制:64MB 时间限制:1000ms 特判: No 通过数:30 提交数:37 难度:3 题目描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆. ...

  8. NYOJ 737 (石子合并)

    该题是一道DP题,核心思想如下: 某个区间一定是这个区间内的某两个子区间合成的(这两个子区间互补,即这两个区间加起来等于大区间), 所以我们枚举所有的情况,取个最大值即可.因为最初是从2堆石子开始无法 ...

  9. nyist 737 相邻石子合并问题

    http://acm.nyist.net/JudgeOnline/problem.php?pid=737 动态规划状态方程: dp[i][j]=d[i][k]+dp[k+1][j]+(sum[k]-s ...

随机推荐

  1. laravel 去掉index.php伪静态

    1,首先,让apache服务器支持rewrite 可以在apache配置文件中定义rewrite规则,是全局的,无论哪个应用都实用 //httpd.config Listen 80 RewriteEn ...

  2. Git log、diff、config 进阶

    前一段时间分享了一篇<更好的 git log>简要介绍怎么美化 git log 命令,其中提到了 alias命令,今天再继续谈谈 git相关, 看看如何通过配置自己的 git config ...

  3. React后端管理系统-商品详情detail组件

    import React from 'react'; import MUtil from 'util/mm.jsx' import Product from 'service/product-serv ...

  4. dicom和dicomdir

    转载http://blog.sina.com.cn/s/blog_4bce5f4b01019ix5.html DICOM 文件内容在 Part 3 DICOM IOD 里定义.CT, MR, CR, ...

  5. python中字符串编码方式小结

    Python2中字符串的类型有两种:str和unicode,其中unicode是统一编码方式,它使得字符跟二进制是一一对应的,因此所有其他编码的encode都从unicode开始,而其他编码方式按照相 ...

  6. jquery横向手风琴效果2

    <!doctype html> <html> <head> <meta charset="utf-8"> <script ty ...

  7. scrapy--dytt(电影天堂)

    喜欢看电影的小伙伴,如果想看新的电影,然后没去看电影院看,没有正确的获得好的方法,大家就可以在电影天堂里进行下载.这里给大家提供一种思路. 1.dytt.py # -*- coding: utf-8 ...

  8. python的多继承C3(mro)算法

    多继承的继承顺序按照C3算法进行顺序继承 例一 按照深度A类从左往右有三条可继承的"路" 先按照深度优先的算法,将每一路的每一个节点加到列表中 B = [B,D,F,H] C = ...

  9. php-安装与配置-未完待续2

    一,准备工作 在入门指引中,我们已经知道PHP的3个应用领域,不同的场景,需要安装的东西是不同的.具体如下: 服务器端脚本,在通常情况下,需要三样东西:PHP 自身.一个 web 服务器和一个 web ...

  10. 详解 JavaScript 中 splice() 方法

    splice() 方法是一个比较少用的方法,但是功能确实很好,并且在我们 coding 的时候,经常有需要 splice() 方法,先介绍一下该方法. 在 JavaScript 中 splice() ...