题目大意:
  给你一个$n(n\leq 2\times 10^4)$个点,$m(m\leq 2\times 10^5)$条边的带边权的连通图。其中有$k(k\leq 20)$个关键点。关键点之间有$g$条拓扑结构的依赖关系,每条依赖关系$(u,v)$描述点$v$依赖于点$u$,即点$u$必须在点$v$之前出现。若同时存在依赖关系$(u,v)$和$(v,w)$,则有依赖关系$(u,w)$。每个点可以经过多次,经过的可以不满足依赖关系。求一条从$1$到$n$的最短的路径,满足每个关键点至少有一次被经过时满足了依赖关系。

思路:
  状压DP。
  首先用Floyd预处理每个关键点依赖的点集$pre[i]$。然后用Dijkstra求出点$1$和每个关键点作为起点的单源最短路。
  用$f[S][i]$表示已满足依赖关系的点集为$S$,当前路径上,最后一个结点为$i$。
  预处理$f[i][i]=\left\{\begin{aligned}dis[1][i]&&{pre[i]=\varnothing}\\\infty&&pre[i]\neq\varnothing\end{aligned}\right.$。
  转移方程为$f[S\bigcup i][i]=\min\{f[S][j]+dis[i][j]\mid i\notin S\land pre[i]\in S\}$。
  答案$ans=\min{f[U][i]+dis[i][n]}$。
  Floyd$O(k^3)$,配对堆优化Dijkstra$O(m+n\log n)$,动态规划$O(2^kk^2)$时间复杂度为$O(k^3+m+n\log n+2^kk^2)$。空间复杂度$O(2^kk)$。
  在BZOJ上跑了9068 MS,内存89980 KB,Rank 2。但是POI原题内存是64 MB。
  一种卡内存的方法是压缩一下状态,因为$f[S][i]$中$S$一定包括$i$,因此我们可以把$i$这一位去掉,然后把大于$i$的位往前移。空间除以一个常数,可以卡过。
  还有一种做法是根据$S$中元素个数,将DP数组进行滚动,空间复杂度为$O(n\binom{k}{\lceil\frac{k}{2}\rceil})$。

 #include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
#include<functional>
#include<ext/pb_ds/priority_queue.hpp>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,K=;
const int inf=INT_MAX;
struct Edge {
int to,w;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
e[v].push_back((Edge){u,w});
}
bool b[K][K];
int n,m,k,pre[K],dis0[N],dis[K][N],f[<<K][K];
struct Vertex {
int id,dis;
bool operator > (const Vertex &another) const {
return dis>another.dis;
}
};
void dijkstra(const int &s,int dis[]) {
static __gnu_pbds::priority_queue<Vertex,std::greater<Vertex> > q;
static __gnu_pbds::priority_queue<Vertex,std::greater<Vertex> >::point_iterator p[N];
for(register int i=;i<=n;i++) {
p[i]=q.push((Vertex){i,dis[i]=i==s?:inf});
}
while(!q.empty()) {
const int x=q.top().id;
q.pop();
for(register unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(dis[x]+w<dis[y]) {
q.modify(p[y],(Vertex){y,dis[y]=dis[x]+w});
}
}
}
}
int main() {
n=getint(),m=getint(),k=getint();
for(register int i=;i<m;i++) {
const int u=getint(),v=getint(),w=getint();
add_edge(u,v,w);
}
if(k==) {
dijkstra(,dis0);
printf("%d\n",dis0[n]);
return ;
}
for(register int i=getint();i;i--) {
const int u=getint(),v=getint();
b[u-][v-]=true;
}
for(register int l=;l<k;l++) {
for(register int i=;i<k;i++) {
if(i==l||!b[i][l]) continue;
for(register int j=;j<k;j++) {
if(j==l||j==i||!b[l][j]) continue;
b[i][j]=true;
}
}
}
for(register int i=;i<k;i++) {
for(register int j=;j<k;j++) {
if(b[i][j]) pre[j]|=<<i;
}
}
dijkstra(,dis0);
for(register int i=;i<=k+;i++) {
dijkstra(i,dis[i-]);
}
for(register int state=;state<<<k;state++) {
for(register int i=;i<k;i++) {
f[state][i]=inf;
}
}
for(register int i=;i<k;i++) {
if(!pre[i]) f[<<i][i]=dis0[i+];
}
for(register int state=;state<<<k;state++) {
for(register int i=;i<k;i++) {
if(!(state&(<<i))&&(state&pre[i])==pre[i]) {
for(register int j=;j<k;j++) {
if(f[state][j]!=inf) {
f[state^(<<i)][i]=std::min(f[state^(<<i)][i],f[state][j]+dis[j][i+]);
}
}
}
}
}
int ans=inf;
for(register int i=;i<k;i++) {
if(f[(<<k)-][i]==inf) continue;
ans=std::min(ans,f[(<<k)-][i]+dis[i][n]);
}
printf("%d\n",ans);
return ;
}

[POI2007]Tourist Attractions的更多相关文章

  1. [POI2007]ATR-Tourist Attractions [TPLY]

    [POI2007]ATR-Tourist Attractions 题目链接(https://www.luogu.org/problemnew/show/P3451) 这种稠密图还是建议你不要跑spfa ...

  2. csp-s模拟48,49 Tourist Attractions,养花,画作题解

    题面:https://www.cnblogs.com/Juve/articles/11569010.html Tourist Attractions: 暴力当然是dfs四层 优化一下,固定两个点,答案 ...

  3. LYDSY模拟赛day1 Tourist Attractions

    /* 假设路径是 a − b − c − d,考虑枚举中间这条边 b − c,计 算有多少可行的 a 和 d. 设 degx 表示点 x 的度数,那么边 b − c 对答案的贡献为 (degb − 1 ...

  4. 解题:POI 2007 Tourist Attractions

    题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...

  5. [POI2007]ATR-Tourist Attractions

    题目大意:一个无向图,从$1$到$n$,要求必须经过$2,3,\dots,k+1$,给出一些限制关系,要求在经过$v\leq k+1$之前必须经过$u\leq k+1$,求最短路 题解:预处理出$1\ ...

  6. 【JZOJ4857】Tourist Attractions(Bitset)

    题意:给定一个n个点的无向图,求这个图中有多少条长度为4的简单路径. n<=1500 思路: #include<map> #include<set> #include&l ...

  7. [CSP-S模拟测试]:Tourist Attractions(简单图论+bitset)

    题目描述 在美丽的比特镇一共有$n$个景区,编号依次为$1$到$n$,它们之间通过若干条双向道路连接.$Byteasar$慕名来到了比特镇旅游,不过由于昂贵的门票费,他只能负担起$4$个景区的门票费. ...

  8. 比特镇旅游(Tourist Attractions)【暴力+Bitset 附Bitset用法】

    Online Judge:NOIP2016十连测第一场 T2 Label:暴力,Bitset 题目描述 在美丽的比特镇一共有n个景区,编号依次为1到n,它们之间通过若干条双向道路连接. Byteasa ...

  9. D. 旅游景点 Tourist Attractions 状压DP

    题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD 不希望在刚吃过一顿大餐之后立刻去下一 ...

随机推荐

  1. 浅谈this和static

    一.this关键字 一个比较经典的使用: 输出的结果是:12 1.this关键字只能在方法的内部使用,表示对“调用方法的那个对象”的引用,this的用法和其他对象引用并无不同.注意一点:在方法的内部调 ...

  2. linux误删除恢复

    extundelete 大家基本都知道,在linux上误删除了东西后果是很严重的,尤其是在服务器上误删除了东西,对于字符终端,想要实现恢复删除的数据更是难上加难,对于Linux误删除了重要的东西,虽然 ...

  3. Python读取不同文件夹下的图片并且分类放到新创建的训练文件夹和标签文件夹

    在深度学习的训练时,经常会碰到训练的样本数据集和标签数据集是在一个文件夹中,这个时候我们就不得不进行一些数据的预处理和文件的分类,例如将训练(training data)数据集和标签数据集(label ...

  4. PHP遍历数组的几种方法

      这三种方法中效率最高的是使用foreach语句遍历数组.从PHP4开始就引入了foreach结构,是PHP中专门为遍历数组而设计的语句,推荐大家使用.先分别介绍这几种方法     PHP中遍历数组 ...

  5. linux sed讲解

    1.sed 查找替换 显示某一行或某几行##替换sed 's###g' oldboy.txtsed 's@@@g' oldboy.txt sed -i 's###g' oldboy.txtsed -i ...

  6. P1023 税收与补贴问题

    题目背景 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最高价位后,销量以某固定数值递 ...

  7. 论文笔记《Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data Is Continuous and Weakly Labelled》

    一.概述 这个是最近的核心工作了,基本上都是靠着这篇paper的model过日子了啊.. 论文主要讲的是hand gesture recognition,实际上是用googlenet做的一个class ...

  8. 转:Java SoftReference 使用构建对象缓存

    本文介绍对象的强.软.弱和虚引用的概念.应用及其在UML中的表示. 1.对象的强.软.弱和虚引用   在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无法再使用这个对象.也就是说, ...

  9. 浅谈_IDEA导入Eclipse的Web项目

    相信很多同学在工作中都会遇到将一个Eclipse的Web项目导入IDEA的情景,这里浅谈一下具体的操作流程 一:Import Project,选择要导入的项目 二:选择以Eclipse模型的方式导入 ...

  10. python之短路计算-布尔类型

    Python中布尔类型 我们已经了解了Python支持布尔类型的数据,布尔类型只有True和False两种值,但是布尔类型有以下几种运算: 与运算:只有两个布尔值都为 True 时,计算结果才为 Tr ...